The POOL relational
abstraction layer and the
relational storage manager

Ioannis Papadopoulos, for the POOL Team

LCG Applications Area Meeting 28/7/2004

Why a relational abstraction layer

* To achieve technology neutrality for the
implementation of the relational components
of POOL (and eventually the ConditionsDB)
— less maintenance load
— easy introductions/evaluations of new RDBMS

flavours as backends for the POOL components
 To address the problem of distributing data
in RDBMS of different flavours

Why a relational back end for the
object storage

* More natural choice for non-event data
— conditions, calibration/alignment
* To allow the "viewing" of existing relational

data as C++ objects in the off-line
reconstruction/analysis framework

— a typical case: conditions data taken on-line.

The software project (I)

« Requirements collection and component
analysis
— Late 2003 ftill end of March 2004

— Input from experts from CMS and ATLAS (Martin,
Ad, Vincenzo, Torre, ...)

— Requirements captured as use cases

— Drafted a requirements and analysis document
together with the clients

« Domain decomposition

* Derivation of main software requirements

The software project (II)

* Drafted a project plan

— ...which was too optimistic in terms of human
resources

* Manpower
— Developers: Zhen, Radovan, Giacomo, Ioannis
 None working full time
— Beta-testers: Vakho, Michael,...
— Input on design strategy: Andrea, Markus, Dirk,...

Domain decomposition

1.Pure relational data management

. Provide technology neutral RDBMS connectivity and SQL-
free data management

. Clients: file catalog, collection, conditions IoV

2.0bject-relational mapping and storage

. Bridge the differences between relational and object
concepts (object identity resolution, object associations)

. Provide guided object storage
. Client: POOL Relational Storage Service

3.POOL Relational Storage Service

. Adapter implementing the POOL StorageSvc interfaces
. Client: experiment framework

SofTware design

g
““““
.
. v,
o ‘e
o e
.....
o .,
. . ‘e
. g

. e
- L
. e
....
““““
- D

:_I;zl;Cata;); I "Collection |

_______ — — —

Relational | | Relational

Catalog Collection
__ .
RelatzonalAccess

| StorageSvc

____‘iif

Relational StorageSvc

3
3
3
3
A

ObjectRelationalAccess

.
st
e
st
.
s
e

Py
ws®
Py
.
s
--‘
as®

i Sl

e,
.
v,
.,
N
N
.,
.
0
N
N
N
N
.

Seal reflection

MySQL Oracle

SQLite

..... > Uuses
— implements

[Implementation

[2 Abstract interface
@ Technology dependent module

1%t domain:
The Relational Abstraction Layer
(R.A.L.)

Design concepts in RelationalAccess

Design of public interfaces driven by the
software requirements

Attributelist interface used for the handling
and the description of the relational data

Only C++ (no SQL) types exposed

— Type converters responsible for default and user-
defined type conversion.

SQL fragments only in the WHERE clauses of
Queries and DML.

Technology plugin management

 Based on the SEAL component model
— No SEAL plugin management specifics exposed.
— Simplifies implementation and the collaboration
among the plugins.
 User only has to deal with the POOL
RelationalService

— Automatic plugin loading based on the connection
string.

— User code based entirely on the abstract interfaces

Connecting to a database

— Connection string format:

technology_protocol://hostName:portNumber/databaseOrSchemaName:sidNumber

— Examples:
oracle://dbhost/user
mysql://dbhost:1105/dbname
sqlite_http://dbhost/directory/dbfile.db
sqlite_file:/absolute dbfile path.db

— No authentication parameters

— Connection string specifying only the data, not the
access mechanism
« The RelationalService decides which plugin to use.

« Current convention: loading of the module named
"POOL/RelationalPlugins/technology”

Authenticating
« Explicitly, specifying the user name and
password values

« Implicitly, via an TAuthenticationService
— explicitly provided
— registered in the SEAL context tree

« TAuthenticationService:

— Given a connection string, provides the connection
parameters.
— Two existing implementations (plugins):
« environment variables (ignores connection string)

« XML file with connections and parameters

RelationalAccess functionality

 Basic schema handling
— Describing existing and creating new tables

— Support for primary, foreign keys and indices (composed
by one or more columns)

« Data Manipulation Language
— Inserting, deleting, updating rows
— Bulk row insertions
* Queries
— Nested queries involving one or more tables
— Ordering and limiting the result set
— Control of client cache for the result set

— Scrollable cursors

RDBMS plugins

* Oracle

— Based on OCT 9.2.0.4

— Fully supports the R.A.L. interfaces

— Available for the Linux platforms (win32 will follow)
« SQLite

— A light-weight embeddable SQL database engine

— File-based (zero configuration, administration)

— Available for the Linux and Win32 platforms
« MySQL

— Implementation based on the MyODBC driver

— Work in progress...

First clients of the R.A.L.

 RelationalFileCatalog

— Validated the functionality and semantics of the
interfaces

— Tested against Oracle and SQLite

+ Eager beta-testers from the experiments
— CMS online
— ATLAS detector geometry

2"d domain:
The Object-Relational mapping and
object storage in RDBMS

Basic concepts behind object storage
in a relational database

* Classes < Tables
— both describe data layout
— no unique mapping
— need Yo store mapping together with the object data

— need to store mapping versions

* Object identity (persistent address)
— requires unique index for addressable objects

— part of mapping definition

Mapping example (T)

class A {
Int X;
float v;
std::vector<double> v;
class B {
Int I;
std::string s;
} b;
};

Mapping example (IT)

p.k. A fk. constraint ==Y
ID)| X | Y [BI|l BS POS| V
1 |10 |1.4] 3 |“Hello” ‘ 1 0.12
2 122122 3 | “Hi” 2 12.2
3 4.1
4 | 5452
This is only one of the : 321
possible mappings! 2 0.1
2 3 0.1

Mapping Elements
* A mapping :
— Version

— Hierarchical tree of mapping elements

« An element:

— Element type ("Object”, "Primitive”, "Array"”, "POOL
reference”, "Pointer")

— Associated table name

— Associated variable name
— Associated variable type
— Associated columns

— Associated mapping elements

 Everything can be stored in 3 relational tables

Mapping generation
 Prerequisites :
— C++ class(es) already defined

« A tool will be provided for the automatic generation of C++
header files given a schema.

— The SEAL dictionary libraries already generated

« Tool will be provided for the user-driven mapping
generation:
— XML input file to
 Select the C++ classes

 Override default mapping rules

* Define the mapping version

— Mapping gets "materialized” and stored in the database

Guided object storage

« Object I/0 via the ObjectRelationalPersistency
interface

— For every object I/0 operation the client has to supply:
« the corresponding SEAL dictionary for the object's class
 the object/relational mapping

 the "persistent address” (eg. the value of the primary key
in the table corresponding to the object's class)
— Object data stored/retrieved following the SEAL
dictionary information, and finding the corresponding
entries in the mapping

* Many schema evolution cases can be treated transparently
through this mechanism

3'd domain:
The POOL Relational Storage Service

An adapter as a plugin for the
POOL Storage Service

* APOOL "object™
— Mapping version
— Value(s) of indexed parameter(s)

« APOOL “container”
— A table holding the values of the "object” structure

« APOOL "“database”
— Oracle user schema
— MySQL database
— SQLite file

Status and Plans

 First version of the R.A.L. already available with
POOL 1.7.0

— RelationalAccess, AuthenticationService, OracleAccess,
SQLiteAccess

— First client: RelationalFileCatalog
— MySQLAccess being implemented

« ObjectRelationalAccess in progress
— Mapping persistency implemented and tested
— Mapping materialization implemented and partly tested
— Object storage being implemented
— Related tools defined but not yet be implemented

 RelationalStorageSvs in progress
— Basic design ready
— Related tools to be defined and implemented

What is still required

« Software upgrades of underlying packages:

— AttributeList
 Support for all primitive C++ types

* Define and support a Blob type
* Package needs some clean up
* Conventions
— Format of the connection string
 Can we agree on an LCG-wide convention?
* Manpower
— Currently only few developers

— More feedback (test cases) from the experiments
« Both for the R.A.L. and the Storage Manager.

..To conclude

» The project is active with the first
deliverables already available.

« Some documentation is already available
from

—the POOL User Guide
http://pool.cern.ch/releases/POOL_1_7_0/doc/UserGuide

— The RelationalAccess component description

http://pool.cern.ch/releases/POOL_1_7_0/doc/RelationalAccess/
Relational Access

e A lot of work is still ahead of us...

