
The POOL relational
abstraction layer and the

relational storage manager

LCG Applications Area Meeting 28/7/2004

Ioannis Papadopoulos, for the POOL Team

Why a relational abstraction layer

• To achieve technology neutrality for the
implementation of the relational components
of POOL (and eventually the ConditionsDB)
– less maintenance load

– easy introductions/evaluations of new RDBMS
flavours as backends for the POOL components

• To address the problem of distributing data
in RDBMS of different flavours

Why a relational back end for the
object storage

• More natural choice for non-event data
– conditions, calibration/alignment

• To allow the “viewing” of existing relational
data as C++ objects in the off-line
reconstruction/analysis framework
– a typical case: conditions data taken on-line.

The software project (I)

• Requirements collection and component
analysis
– Late 2003 till end of March 2004

– Input from experts from CMS and ATLAS (Martin,
Ad, Vincenzo, Torre, ...)

– Requirements captured as use cases

– Drafted a requirements and analysis document
together with the clients

• Domain decomposition
• Derivation of main software requirements

The software project (II)

• Drafted a project plan
– ...which was too optimistic in terms of human

resources

• Manpower
– Developers: Zhen, Radovan, Giacomo, Ioannis

• None working full time

– Beta-testers: Vakho, Michael,...

– Input on design strategy: Andrea, Markus, Dirk,...

Domain decomposition
1.Pure relational data management

• Provide technology neutral RDBMS connectivity and SQL-
free data management

• Clients: file catalog, collection, conditions IoV
2.Object-relational mapping and storage

• Bridge the differences between relational and object
concepts (object identity resolution, object associations)

• Provide guided object storage
• Client: POOL Relational Storage Service

3.POOL Relational Storage Service
• Adapter implementing the POOL StorageSvc interfaces
• Client: experiment framework

Software design

uses

Abstract interface

Implementation

implements

Technology dependent module

FileCatalog Collection StorageSvc

Experiment framework

RelationalAccess Seal reflection

ObjectRelationalAccessRelational
Collection

Relational
Catalog

RelationalStorageSvc

MySQL Oracle SQLite

1st domain:
The Relational Abstraction Layer

(R.A.L.)

Design concepts in RelationalAccess

• Design of public interfaces driven by the
software requirements

• AttributeList interface used for the handling
and the description of the relational data

• Only C++ (no SQL) types exposed
– Type converters responsible for default and user-

defined type conversion.

• SQL fragments only in the WHERE clauses of
Queries and DML.

Technology plugin management

• Based on the SEAL component model
– No SEAL plugin management specifics exposed.

– Simplifies implementation and the collaboration
among the plugins.

• User only has to deal with the POOL
RelationalService
– Automatic plugin loading based on the connection

string.

– User code based entirely on the abstract interfaces

Connecting to a database
– Connection string format:
technology_protocol://hostName:portNumber/databaseOrSchemaName:sidNumber

– Examples:
oracle://dbhost/user
mysql://dbhost:1105/dbname
sqlite_http://dbhost/directory/dbfile.db
sqlite_file:/absolute_dbfile_path.db

– No authentication parameters

– Connection string specifying only the data, not the
access mechanism

• The RelationalService decides which plugin to use.

• Current convention: loading of the module named
“POOL/RelationalPlugins/technology”

Authenticating
• Explicitly, specifying the user name and

password values

• Implicitly, via an IAuthenticationService
– explicitly provided

– registered in the SEAL context tree

• IAuthenticationService:
– Given a connection string, provides the connection

parameters.

– Two existing implementations (plugins):
• environment variables (ignores connection string)
• XML file with connections and parameters

RelationalAccess functionality
• Basic schema handling

– Describing existing and creating new tables

– Support for primary, foreign keys and indices (composed
by one or more columns)

• Data Manipulation Language
– Inserting, deleting, updating rows

– Bulk row insertions

• Queries
– Nested queries involving one or more tables

– Ordering and limiting the result set

– Control of client cache for the result set

– Scrollable cursors

RDBMS plugins
• Oracle

– Based on OCI 9.2.0.4

– Fully supports the R.A.L. interfaces

– Available for the Linux platforms (win32 will follow)

• SQLite
– A light-weight embeddable SQL database engine

– File-based (zero configuration, administration)

– Available for the Linux and Win32 platforms

• MySQL
– Implementation based on the MyODBC driver

– Work in progress...

First clients of the R.A.L.

• RelationalFileCatalog
– Validated the functionality and semantics of the

interfaces

– Tested against Oracle and SQLite

• Eager beta-testers from the experiments
– CMS online

– ATLAS detector geometry

2nd domain:
The Object-Relational mapping and

object storage in RDBMS

Basic concepts behind object storage
in a relational database

• Classes ↔ Tables
– both describe data layout

– no unique mapping

– need to store mapping together with the object data

– need to store mapping versions

• Object identity (persistent address)
– requires unique index for addressable objects

– part of mapping definition

Mapping example (I)

class A {
int x;
float y;
std::vector<double> v;
class B {
int i;
std::string s;

} b;
};

Mapping example (II)

.....

“Hi”32.2222

“Hello”31.4101
B_SB_IYXID

T_A

0.132
0.122

32.112
5.45241
4.131

12.221
0.1211

VPOSID

T_A_Vp.k. f.k. constraint

This is only one of the
possible mappings!

Mapping Elements
• A mapping :

– Version

– Hierarchical tree of mapping elements

• An element:
– Element type (“Object”, “Primitive”, “Array”, “POOL

reference”, “Pointer”)

– Associated table name

– Associated variable name

– Associated variable type

– Associated columns

– Associated mapping elements

• Everything can be stored in 3 relational tables

Mapping generation
• Prerequisites :

– C++ class(es) already defined
• A tool will be provided for the automatic generation of C++

header files given a schema.

– The SEAL dictionary libraries already generated

• Tool will be provided for the user-driven mapping
generation:
– XML input file to

• Select the C++ classes

• Override default mapping rules

• Define the mapping version

– Mapping gets “materialized” and stored in the database

Guided object storage

• Object I/O via the ObjectRelationalPersistency
interface
– For every object I/O operation the client has to supply:

• the corresponding SEAL dictionary for the object's class

• the object/relational mapping

• the “persistent address” (eg. the value of the primary key
in the table corresponding to the object's class)

– Object data stored/retrieved following the SEAL
dictionary information, and finding the corresponding
entries in the mapping

• Many schema evolution cases can be treated transparently
through this mechanism

3rd domain:
The POOL Relational Storage Service

An adapter as a plugin for the
POOL Storage Service

• A POOL “object”:
– Mapping version
– Value(s) of indexed parameter(s)

• A POOL “container”
– A table holding the values of the “object” structure

• A POOL “database”
– Oracle user schema
– MySQL database
– SQLite file

Status and Plans
• First version of the R.A.L. already available with

POOL 1.7.0
– RelationalAccess, AuthenticationService, OracleAccess,

SQLiteAccess
– First client: RelationalFileCatalog
– MySQLAccess being implemented

• ObjectRelationalAccess in progress
– Mapping persistency implemented and tested
– Mapping materialization implemented and partly tested
– Object storage being implemented
– Related tools defined but not yet be implemented

• RelationalStorageSvs in progress
– Basic design ready
– Related tools to be defined and implemented

What is still required
• Software upgrades of underlying packages:

– AttributeList
• Support for all primitive C++ types
• Define and support a Blob type
• Package needs some clean up

• Conventions
– Format of the connection string

• Can we agree on an LCG-wide convention?

• Manpower
– Currently only few developers
– More feedback (test cases) from the experiments

• Both for the R.A.L. and the Storage Manager.

…to conclude
• The project is active with the first

deliverables already available.
• Some documentation is already available

from
– the POOL User Guide

http://pool.cern.ch/releases/POOL_1_7_0/doc/UserGuide

– The RelationalAccess component description
http://pool.cern.ch/releases/POOL_1_7_0/doc/RelationalAccess/
RelationalAccess

• A lot of work is still ahead of us…

