CMOS Monolithic Active Pixel Sensors for Ionising Radiation

P.P.Allport², G.Casse², A.Evans^{2,3*}, A.R.Faruqi⁴, B.Gallop^{1,3}, R.Henderson⁴, M.Prydderch³, R.Turchetta³, M.Tyndel³, J.Velthuis², G.Villani³, N.Waltham³

3 Rutherford Appleton Laboratory

4 MRC Laboratory of Molecular Biology

- 1 University of Birmingham
- 2 University of Liverpool
- * Speaker
- Overview
 - Introduction
 - UK HEP test structures
 - Star Tracker, 525x525
 Space Science Prototype
 - Summary

Introduction

- Pixellated Detectors ~ $3 100 \mu m$
- Standard VLSI CMOS technology
 - Low Power Consumption & Low Cost
- Industrial drive → Visual Light Imaging
 - Digital Cameras e.g. Mobile-phone, Video Cameras...
- Scientific Application
 - High Energy Physics, Space Science...
- Advantages
 - Radiation hardness
 - Readout speed
 - On chip & in pixel intelligence
 - Room temperature operation

Dimensions: 2cm*2cm

Star Tracker (525x525 \rightarrow 25µm² pitch)

Operation Principle

Basic 3Transistor (3T) pixel

International Workshop on Radiation Imaging Detectors Arwel Evans

Basic 4Transistor (4T) pixel

UK HEP Test Structures

- APS1 (2001), IBM 0.25µm CMOS (2µm epi' layer)
 - Standard 3T & 4T pixels
 - Parametric Analysis
 - Radiation Hard, 10¹² protons/cm² [x10 requirement Linear Collider]
- APS2 (2003), TSMC 0.25μm CMOS (CIS) (8μm epi' layer)
 - Standard 3T & 4T pixels
 - FAPS, 10 memory cells, burst readout 100ns
- APS3 (2004), TSMC 0.25µm CMOS (MS)
 - New pixel design Deep N-well Diode

APS2

 $\begin{array}{ll} \mbox{Cluster Algorithm} & \mbox{- Seed Signal} \geq 6\sigma \\ & \mbox{- Area Signal} \geq 2\sigma \end{array}$

	Signal	Noise	
Туре	(3x3)	(3x3)	S/N
3T B	93.3+/-0.5	3.828 +/- 0.006	24.4+/-0.1
3T A	66.1+/-0.8	3.298 +/- 0.007	20.0+/-0.2
4T C	97.8+/-0.9	4.14 +/- 0.01	23.6+/-0.2
4T B	107.7+/-0.9	4.17 +/- 0.01	22.8+/-0.2
4T A	105+/-1	4.5 +/- 0.01	23.3+/-0.2

Star Tracker [Space Science Prototype]

•Visual, Integrating Sphere ($\lambda = 510$ nm)

- •UV, Front etched and back-thinned
- •Low Energy Electrons, $10 \text{keV} \rightarrow 120 \text{keV}$

120 keV Electron Microscope [LMB Cambridge]

- Calibration
 - PTC, # of ADC units per e/h pair = 0.010 + 0.001
 - Noise floor = 1.2 + 0.1 ADC units
 - ETC, # of ADC's per incident 120keV electron = 23 +/- 2
 - S/N ~ 20

Single Electron Sensitivity [120 keV E.M.]

- Low electron flat field illumination of ~ 6 electrons per 10 pixels
- Increased noise
 - Noise floor = 3.2 + 0.3 ADC units
 - Expected Signal Peak = 23 +/- 2 ADC units
 - Expected S/N Ratio ~ 7
- Cluster Algorithm
 - [Seed > 4σ , neighbours > 2σ]
- S/N Ratio = 8 +/- 2

Summary

MAPS are a new and promising technology
Detector for HEP experiments

MIP S/N = 24.4 +/- 0.1

Star_Tracker, demonstrated direct detection of 120 keV electrons

120 keV S/N = 8 +/- 2

Results expected soon for

- Flexible Active Pixel Sensors (10 memory cells per pixel)
- Deep N_Well

•Star_Tracker, Characterisation:

• Uniform Light Source → Integrating sphere → PTC 510nm

- → Full Well Capacity = 400k elec'
- \rightarrow Signal Uniformity

International Workshop on Radiation Imaging Detectors Arwel Evans Gain Distribution Photons

Noise Distribution Electrons

•Radiation Damage

- Dose: ~ 18krads
- Pedestal shift of ~ 21 ADC units
- Noise unchanged

Main sources of pedestal change

Increase in leakage current NO

> Transistor threshold voltage shift (V_{th}) YES, but can be corrected by DS or *design in deep submicron

*Noise Histogram: Difference after-before

• <u>UV program</u>

Front illuminated approach

Back illuminated approach

• Front Etched UV Response

*Focused Ion Beam

•Back Thinning

•Image from two back-thinned Star_Tracker sensors

Raulation initaging Detectors Arwel Evans

•<u>RalHepAPS 3</u>

Deep N-Well Diode

→Increased E-field - Charge Collection efficiency, Amount of Charge Collected & Charge Collection Speed

- Increased Radiation Hardness
- Negative Substrate Contact

*Designed by: Arwel Evans, Bruce Gallop, Renato Turchetta

Radiation Imaging Detectors