

State of the art on epitaxial GaAs detectors

- G.C. Sun^a, N. Mañez^a, M. Zazoui^a, A.Al-Ajili^b, V.O'Shea^b, F.Quarati^b, K.M.Smith^b, D. Chambellan^c, O. Gal^c, Ph. Pillot^c, M. Lenoir^d, J. P. Montagne^d, A. Bchetnia^e, J.C. Bourgoin^f
- ^a LMDH, Université Pierre et Marie Curie (Paris 6), France
- ^b Department of Physics and Astronomy, University of Glasgow,UK.
- ^c LIST/DIMRI, CEA , France
- ^d Hospital Armand Trousseau, Paris, France.
- ^e Lab. de Physique des Matériaux, Faculté des Sciences de Monastir, Tunisie
- ^f GESEC R&D, 68 Avenue de la Forêt, 77210 Avon, France

Motivation

Decrease the dose (more than a factor of 10 compared to scintillator flat panels) in X-ray imaging

Outline

- Review of X-ray detection with GaAs
- Development of epi-growth of GaAs
- Device processing
- Device electrical characteristics
- Performance of radiation detectors
- Limitations of current devices and ways to overcome

History of GaAs radiation detectors (1)

Early work with LPE GaAs

(by Tavendale group, 1970)

Three typical ²⁴¹Am and ⁵⁷Co γ -ray spectra, at 100V bias and 130°K, from 1.5mm diameter, 80 μ m thick LPE GaAs surface barrier detectors, (carrier concentration ~ 6 x 10¹³ cm⁻³), fabricated on tin-doped substrates.

History of GaAs radiation detectors (2)

MBE epi-GaAs

(Bertuccio et al., 1996/97)

Pulse height spectrum of photons from an ^{241}Am source detected in a 170 x $320\mu m^2$, 5 micron thick MBE undoped GaAs diode detector at 15V reverse bias

5

Progress in the growth of epitaxial GaAs

• One 4 inch, 550 µm layer

 Thickness profile of epi-GaAs grown on four inch substrate

Source: SI GaAs	n ⁺ substrate: n type (<10 ¹⁴ cm ⁻³)
	SI substrate: p type (<10 ¹⁴ cm ⁻³)

6

Electronic properties of epitaxial GaAs

• Photoluminescence mapping

SI GaAs

Epitaxial GaAs layer

Technique to fabricate detectors

Current-Voltage characteristic of a small pad diode

 $2 \text{ nA/mm}^2 \text{ at } 50 \text{ V}$

Alpha particle pulse height spectra

• Combined source ²⁴¹Am(5.5 MeV), ²⁴⁴Cm (5.8 MeV) and ²³⁹Pu (5.2 MeV)

Charge collection efficiency

Fitted values at 100 V, giving charge collection efficiency of 85%.

11

Pulse height spectra of monoenergetic X-rays

• Characteristic K-series X-rays of Ag, Ba and Nb.

Photocurrent versus radiation dose

1mm² epitaxial GaAs diode detector

Limitation: width of depleted zone

Three ways to overcome it:

- 1. growth conditions
- 2. electron irradiation
- 3. use of 3D detectors

1 MeV electron irradiation

3D detectors

'3D' SI-LEC GaAs pixel detector bonded to DASH-E ROIC

