Material Reconstruction with Spectroscopic Pixel X-Ray Detectors

<u>J. Giersch</u>, M. Firsching, D. Niederlöhner, G. Anton

Physikalisches Institut 4, Universität Erlangen-Nürnberg, Germany

6th IWORID 2004

Physikalisches Institut 4

Universität Erlangen, Germany

Outline

Trend towards energy resolution

- Approach for material reconstruction
- Simulation study
- Noise consideration

Trends in X-Ray Pixel Detectors

. One energy threshold in each pixel

Readout for a 64 x 64 pixel matrix with 15-bit single photon counting, M.Campbell, E.H.M.Heijne, G.Meddeler, E.Pernigotti, W.Snoeys, IEEE Trans.Nucl.Sci. 45 (3), June **1998** 751-753

. Two energy thresholds in each pixel

Medipix2, a 64k pixel readout chip with 55 µm square elements working in single photon counting mode, X.Llopart, M.Campbell, R.Dinapoli, D.SanSegundo, E.Pernigotti, Proc. of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, California, November 4-10, **2001**, M7-4, accepted for publication in IEEE Trans.Nucl.Sci.

. An ADC in each pixel

Towards a single-photon energy-sensitive pixel readout chip: pixel level ADCs and digital readout circuitry, David San Segundo Bello, Bram Nauta and Jan Visschers, Proceedings of the 13th ProRISC workshop, Veldhoven, the Netherlands, November 28 and 29, **2002**, pp.444-448

What can be done with energy information?

Physikalisches Institut 4

Weighting Technique

 E_0

Detector

$S = \langle I' \rangle - \langle I \rangle$ $+ + + + + + + + + + + + + + + + + + + $	Energy
$SNR = \frac{\tilde{S}}{\sigma_{\tilde{S}}}$	$w_i = \frac{T_i - T'_i}{T_i + T'_i}$
$w_i = weighting fun$	ction

 T_i = transmittance in energy channel i

Physikalisches Institut 4

Universität Erlangen, Germany

Material Information

j: material index

Physikalisches Institut 4

Likelihood approach

i: energy index

 $L(\underline{a}) = f(T_1|\underline{a}) \cdot f(T_2|\underline{a}) \cdot \dots \cdot f(T_n|\underline{a})$ best estimation $\underline{a} = \hat{\underline{a}}$ $L(\hat{\underline{a}}) \stackrel{!}{=} \text{maximum}$

Physikalisches Institut 4 Universität Erlangen, Germany

Least Square Fit

$$-\log T_i = \sum_{j=1}^p \mu'_j(E) \cdot a_j$$
$$y_i := -\log T_i$$

- New measure value y is linear in material concentration a
- Gaussian distribution are a good approximation for photon numbers
 ⇒ Transmittance *T* is Gaussian distributed
- With sufficient statistics *log(T)* can be linearised
 ⇒ New measure value *y* is Gaussian distributed

Likelihood approach is equivalent to Least Square Fit

Reconstruction

Matrix notation:

$$y = M \cdot \underline{a}$$

Example of μ '-matrix *M*:

$$M := \begin{pmatrix} \mu'_{E_1,\mathsf{H}} & \mu'_{E_1,\mathsf{O}} & \mu'_{E_1,\mathsf{I}} \\ \mu'_{E_2,\mathsf{H}} & \mu'_{E_2,\mathsf{O}} & \mu'_{E_2,\mathsf{I}} \\ \mu'_{E_3,\mathsf{H}} & \mu'_{E_3,\mathsf{O}} & \mu'_{E_3,\mathsf{I}} \\ \mu'_{E_4,\mathsf{H}} & \mu'_{E_4,\mathsf{O}} & \mu'_{E_4,\mathsf{I}} \end{pmatrix}$$

Reconstruction is "matrix inversion":

 $M^{-1} = (M^T M)^{-1} M^T$ $M^{-1} : \text{pseudoinverse}$ $\hat{\underline{a}} = M^{-1} y$

8

Physikalisches Institut 4

Jürgen Giersch

Simulation Case 1

All simulation done with EGS4 based Monte Carlo Simulation ROSI www.pi4.physik.uni-erlangen.de/Giersch/ROSI/

- Water background:
 2 cm x 2 cm, 1 cm thick
 Water box:
 - 0.5 cm x 0.5 cm, 1 cm thick
- Iodine box:
 0.5 cm x 0.5 cm, 52 µm thick
 (25.6 mg/cm²)
- Ideal energy resolving detector
- . Ideal anti-scatter grid
- X-ray source with four lines (30 keV, 40 keV, 60 keV, 80 keV) and homogenous intensity

Results of Simulation Case 1

Counting image

Physikalisches Institut 4 Universität Erlangen, Germany Jürgen Giersch

Weighting image

Simulation Case 2

11

Water wedge: 10 cm x 10 cm, Thickness: 6 cm ... 12 cm

 $3 \text{ cm x} 11 \text{ cm}, 10 \text{ }\mu\text{m}$ thick (4.93 mg/cm^2)

Ideal energy resolving detector

Ideal anti-scatter grid

X-ray source with four lines (30 keV, 40 keV, 60 keV, 80 keV) and homogenous intensity

Physikalisches Institut 4

Results of Simulation Case 2

SNR Consideration

 SNR_{C}^{i} signal-to-noise ratio of counting image SNR_{M}^{i} signal-to-noise Ratio of material image

Water	SNR _C	SNR _M	SNR _C /SNR _M
6 cm	4.34	2.84	1.52
9 cm	2.89	1.86	1.55
12 cm	1.95	1.20	1.62

Image of material concentration uses not all information

Proposal: Image Fusion

Goal: Combination of

- good SNR of intensity of traditional X-ray image and
- additional information of material reconstruction

Iodine concentration \rightarrow saturation of colour red

Physikalisches Institut 4 Universität Erlangen, Germany

Results of Image Fusion

Filtering of iodine image: sliding average 3 x 3 pixels, "windowed"

histograms of iodine images

Jürgen Giersch

Universität Erlangen, Germany

Physikalisches Institut 4

Conclusion

- Spectroscopic pixel detectors can be used for reconstructing material concentration
- Image fusion allows to add material information to traditional X-ray images
- Detectors with material reconstruction capabilities can lead to new applications

Physikalisches Institut 4 Universität Erlangen, Germany