The 6th International Workshop on Radiation Imaging Detectors, 25 - 29 July 2004, Glasgow

Digital X-ray portable scanner based on monolithic semi-insulating GaAs detectors:

General description and first "quantum" images

F. Dubecký¹, <u>A. Perd'ochová</u>², P. Ščepko³, B. Zaťko¹, V Sekerka³, V. Nečas²,
M. Sekáčová¹, M. Hudec³, P. Boháček¹ and J. Huran¹

¹Institute of Electrical Engineering, Slovak Academy of Sciences, SK - 841 04 Bratislava, Slovakia

²Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, SK - 812 19 Bratislava, Slovakia

³T&N Systems, Ltd., Severná 8, SK - 97401 Banská Bystrica, Slovakia

OUTLINE

> MOTIVATION

- GaAs material properties
- Line scan operation

DETECTORS: LEC SI GaAs strip line in edge on configuration

- Characterization of tested detectors
- Etched trenches in strip line technology
- Tests of parallel strip connection
- Microfocus beam tests

> SCANNER CONSTRUCTION

FIRST IMAGES OBTAINED WITH X-ray SCANNER

CONCLUSIONS

MOTIVATION

GaAs MATERIAL PROPERTIES

- ✓ Radiation hardness
- ✓ Low cost
- ✓ Fast
- Wide band gap operation at RT
- Highly developed technology processing
- Easily commercially available

LINE SCANNING TECHNIQUE IN RADIOGRAFIC IMAGING

- ✓ Technical simplest solution
- ✓ Low cost
- Useful for fast testing of detector applicability in X-ray imaging
- High quality of X-ray image (good scattered rejection)
- Useful for many industrial and even medical applications

CHOICE OF GaAs DETECTOR – X-ray SOURCE GEOMETRY

CHARACTERIZATION OF INVESTIGATED STRIP LINE DETECTOR

Substrate: 250 μ m of bulk undoped LEC SI GaAs - (CMK Ltd, Žarnovica, Slovakia) with resistivity of $5.2 \times 10^7 \Omega$ cm and Hall mobility of $5200 - 5800 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$

Photo and schematic view of monolithic strip line detector segment

SI GaAs strip line detector: SAMO-XS

Number of strips in line	Pitch (mm)	Absorption length (mm)	Size of line detector (mm)	Effective absorption volume of strip (mm ³)	Maximum thickness of detector field (mm)
32	0.25	1.20 0.25	8 x 3.5	0.10 0.18	0.2 – 0.3

ETCHED TRENCHES IN TECHNOLOGY OF STRIP LINE DETECTORS

Trenches creation: RIE (reactive ion etching) technique, additional photolithographic masking (frame of 8 µm)

ELECTRIC AND DETECTION PROPERTIES OF PARALLELLY CONNECTED STRIPS

MICROFOCUS BEAM TEST OF CROSS-TALK BETWEEN NEIGHBOURING STRIP LINE DETECTORS

- X-ray tube: 60 kV, 50 mA
- X-ray beam: Ø 250 μm
- Step: 25 μm starting from 11th to 13th strip
- Time of measurement: 1 s

Andrea Perdochova

Authors are acknowledged to Fraunhofer Institut für Zerstörungsfreie Prüfverfahren EADQ Dresden for enabling the experiments

SI GaAs STRIP LINE DETECTOR ASSEMBLY

Detail of chip bonded on PCB

Mounted on 0.25 mm thick PCB holder Test prototype of detection line

PROGRESS IN READOUT ELECTRONICS

PROTOTYPE CONCEPT: Based on VLSI readout circuit (IWORID 2003)

- Prototype series
- Technical problems
- High cost

FINAL DESIGN OF F-E READOUT: SMD assembled PCB

- Low cost per channel
- Simple possibility in modification
- Optimized for used chip holder

FINAL CONSTRUCTION OF X-ray SCANNER BASED ON SAMO XS STRIP LINE DETECTORS

> 480 strip SI GaAs detectors in line 12 cm long (pitch 0.25 mm)

> 20 readout analogue cards, each with 24 readout channels

View of opened analog scanner part with cooling system (in front)

Andrea Perdochova

Detection unit of scanner in cover with X possitionning motion system up to 14 cm (in 564 (250 μ m) or 1650 (85 μ m) steps)

THE FIRST DIGITAL X-ray SCANNER

based on bulk SI GaAs radiation detectors working in quantum mode

FIRST IMAGES OBTAINED WITH X-RAY SCANNER EXPERIMENT

X-ray tube: 70 kV, 8 mA, 1 s per line

PHOTOS AND X-ray IMAGES

CONCLUSIONS

• DETECTOR

Succesful realization of line strip detectors based on bulk undoped SI GaAs (CMK Ltd., Žarnovica).

CHIP MOUNTING

Flexible PCB holders with direct connection through micro-connector.

READOUT ELECTRONICS

Front-end readout modul fabricated using progressive SMD technology with automatic assembling of electronic devices (24 channels, equivalent noise charge < 400 e⁻ rms, maximum readout rate 10⁵ s⁻¹, memory of each modul, common threshold, USB connection to PC).

• X-POSSITIONNING MOTION SYSTEM

Minimum adjustable step of 0.085 mm.

DEVELOPED CONTROLING COMMUNICATION AND IMAGING SOFTWARE

- 3 corrections including:
- normalisation of background counting inhomogenities
- compensation of instabilities in X-ray tube flux
- compensation of differencies in collection of even and odd 24 strip chips (due to diverging photons)
- FUTURE PLANS
 - detail study of imaging performance of the developed X-ray scanner
 - improvement of line arrangement
 - increasing spatial resolution using finer step of the line
 - implementaion of collimated X-ray source in the scanning system...

GOLDEN AWARD OF 36th FAIR INCHEBA, BRATISLAVA 2004

