Pixel Arrays in X-ray Astronomy and Related Fields

G.W. Fraser

Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (gwf@star.le.ac.uk)

1. Current projects and design drivers

2. Laboratory imaging XRF (using CCDs)

3. Planetary imaging XRF (using GaAs pixel arrays)

The University of Leicester Space Research Centre

INDUSTRIAL COLLABORATORS

Photonis SAS
EADS Astrium
Honeywell Inc.
AMPTEK
Lablogic
Silson
Nova Scientific Inc

E2V Ltd. Photek RMD Inc. Metorex Severn Science Bayer JMAR Oxford Instruments Walker Precision Engineering SIRA Gresham Scientific Instruments JRA Technology El Mul Hamamatsu

EPSR

eesa

Imaging in the University of Leicester Space Research Centre (I)

Project	Detector	Scientific Driver(s)
XMM-EPIC	Open electrode CCD	ΔE , 0.1-10 keV QE, Bi, Rad
AXAF HRC	Low noise MCP	A, Δx, 0.1-10 keV QE, Bi
Swift XRT	Open electrode CCD	ΔE , 0.1-10 keV QE, Bi, T, Rad
Lobster-ISS	Microwell PC	A, 0.1- 4 keV QE, Bi
XEUS NF	TES	ΔE , 0.1-6 keV QE
XEUS WF	MOS or pn CCD	ΔE , 0.1- 6 keV QE, N
XEUS HE	Hybrid CCD/CZT	1-100 keV QE
J-PEX	Small pore MCP	$\Delta x, 60 \text{ eV QE}$
BepiColombo	GaAs pixel array	ΔE, 0.5-10 keV QE, T, Rad
XIF	linear TES array	$\Delta E, \Delta x$
(D.E _n	hax)/8kf=1	

Imaging in the University of Leicester Space Research Centre (II)

Project

Detector

Scientific Driver(s)

TEARES Auroral Imager Fast neutron Thermal neutron borated MCP Imaging XRF CCD HRGI Biofluorescence STJ array

Bulk Conductivity MCP Spherical slump MCP Si MCP + a-Si pixel array neutron QE, A Gadox+CCD

format, N, electron QE format, 10 eV QE neutron QE, Δx ΔE , 0.1-6 keV QE 10-150 keV QE ΔE , 2 eV QE, Bi

Detection of Optical Fluorescence using Superconducting Tunnel Junctions (STJs)

A microarray or gene chip is a 2D array of ~100 μ m x 100 μ m hybridisation cells on a silicon, glass, plastic or nylon membrane. Readout is usually by optical fluorescence An important goal in the life sciences is to perform many parallel tests for gene expression using multiple fluorochrome *probes* - molecules which fluoresce in particular bands of the optical spectrum. The state of the art is three simultaneous probes, but there are severe problems with current readout technology based on sequential pass band filters and PMTs (semi-quantitative, sequential, insensitive). What is required is a *wavelength resolving, non-dispersive photon counting detector of optical photons.*

The detection of multiple fluorescent labels using superconducting tunnel junction detectors

G.W. Fraser*, J.S. Heslop-Harrison[†], T. Schwarzacher[†], A.D.Holland*, P. Verhoeve[‡] and A. Peacock[‡]

(*Space Research Centre, Department of Physics and Astronomy and Department of Biology[†], University of Leicester, Leicester LE1 7RH, UK^{+‡} Science Payloads Technology Division SCI-ST, Research and Scientific Support Department, Postbus 299, ESA/ESTEC, 2200 AG Noordwjik, The Netherlands.)

Planetary X-rays I : The Beagle 2 XRS

- Determine major element abundances : Mg, Al, Si, K, Ca, Ti, Fe
- Determine trace (ppm) elemental abundances up to niobium (Z = 41)
- Measure potassium content for K/Ar dating of Martian rocks.

University of Leicester

Planetary X-rays II

The power of an imaging telescope in planetary XRF : Mars as seen by *Chandra ACIS* - (K.Dennerl, 2003)

Planetary X-rays III : IXRF - X-ray Remote Sensing

Laboratory Imaging X-ray Fluorescence using MCP optics and X-ray CCDs

- Combination of MCP optic and X-ray CCD to permit imaging X-ray fluorescence with "no moving parts"
- Proof of principle A.P. Martin et al., X-ray Spectrometry 28 (1999) 64.
- Position resolution on the detector of $\sim 250 \ \mu m$
- Magnification possible
- Scale invariant

IXRFS Lab System

G.J. Price et al., Rev.Sci.Instr. (2004) in press

Garnetiferous Anorthosite (Bergen, Norway)

High relief Pleochroic (lt blue-lt brown) Birefringent

Plagioclase

Microcline (KAlSi3O8) and Albite (NaAlSi3O8)

Garnet Almandine (Fe3(2+)Al2SiO12)? with Pyrope (Mg3Al2Si3O12)?

IWORID Glasgow, 26th July 2004

1 cm

Overlaid Optical and X-ray Images

A Future Opportunity for Planetary IXRF: ESA BepiColombo to Mercury (2016)

MIXS-T

•low mass Wolter Type 1 optic based on microchannel plates. One metre focal length $(A_{eff} \sim 100 \text{ cm}^2)$.

- •GaAs pixel array
- •Radiation hard solar monitor

•Use of optic allows use of small focal plane with resultant advantages in shielding, cooling

MIXS Mission Issues :

•Exposure maps (2 Hermean days/ 117 Earth days)

8

10

• Expected X-ray fluxes as functions of solar flare state (Quiet, B-flare, C-flare, M-flare)

MIXS-T

Requirements :

Radiation Tolerance, Warm Operation, 200 eV Energy Resolution, Spectroscopy down to 0.5 keV

Bandpass	1-10 keV (elemental range Na to Fe)
Basic surface pixer	/ X / Sq.KIII
Optic type	Wolter Type 1.
Focal length	1 metre
Optic technology	Radially packed square-pore microchannel plate
Field-of-view	~2 degrees FWZM
On axis angular resolution	2 arcminutes FWHM (1.1 arcminute already measured on prototypes)
Diameter	21 cm
Optic mass	0.5 kg
Focal plane detector	Pixellated GaAs array, flip-chip bump-bonded to custom ASIC chip
Operating temperature	-10 degrees C or higher
Radiation tolerance	High compared to silicon : 200 krad on single pixel GaAs measured (for times 2 increase in leakage current). For comparison, the maximum tolerable dose for an X-ray CCD is ~1 krad.
Energy resolution	257 eV at 5.9 keV at -3 deg.C ; 219 eV at - 30 deg. C

Spherically slumped MCP Collimator (1) constant L/D=10:1

BepiColombo MIXS-C

1.5

effective length (cm)

0.5

سا ۵٫۵

-0.20

Medipix 1 ASIC - 1 micron technology

Medipix1 (1998) 4096 pixels 170 x 170 μm² 1.2 cm² sensitive area 1.6 x 10⁶ transistors

Medipix I ASIC SnPb bumps

GaAs array flip-chip bump-bonded and mounted on the MUROS Multi-Purpose Readout System daughter board

Thanks to

A.Owens, A. Peacock (Estec)

S. Dunkin, B. Maddison (RAL)

K. Muionenon, J. Huovelin (Helsinki)

J.Pearson, J. Carpenter, J.Nussey, G.Price, N. Bannister, G.Butcher, D. Talboys, P. Heslop-Harrison, T.Schwarzacher, J.Lees, D.Bassford, R.Ambrosi (Leicester)

A.Holland (Brunel)

