IWORID 2004

Wide Bandgap Semiconductor Detectors for **Harsh Radiation Environments**

James Grant^{*a*}

<u>W Cunningham</u>^a, A Blue^a, J.Vaitkus^b,

E. Gaubas^b, M Rahman^a

a University of Glasgow

b Institute of Materials Science and Applied Research,

UNIVERSITY of **GLASGOW**

Vilnius University

28th July 2004

Outline

- Background and motivation
- Materials investigated
- Fabrication steps (brief)
- Characterisation of detectors
- SiC irradiations, results and analysis
- GaN irradiations, results and analysis
- Conclusions

Background and Motivation

Stable operation of detector with current Si detector technology not possible beyond fluences of $3x10^{14}$ fast hadrons/cm²

- LHC at CERN fluences of ~ $3x10^{15}$ /cm²
- sLHC (2012) fluences of $\sim 1.6 x 10^{16}/\ cm^2$

> Number of strategies possible for improving radiation tolerance of systems placed in harsh radiation environments

s/c Material Investigated

≻ SiC

- Vanadium doped 4–H SiC (Cree)

Vanadium concentration ~ 10^{18} cm⁻³ => ρ ~ $10^{11}\Omega$ cm

Okmetic Semi-Insulating (SI) 4-H SiC (no vanadium doping)
 SI => Highly resistive

≻ GaN

- eptiaxial SI ($2\mu m$ active region) grown by MOCVD
- Bulk GaN RARE! (low resistivity ~ 16Ω cm)

28th July 2004

Characterisation

- I V measurements of detector pre/post irradiations
- Charge Collection Efficiency (CCE) measurements using
 5.48 MeV α source
 - measurements done in vacuum (<20 mbar)

- calibration carried out with Si reference diode

SiC Irradiations

> Vanadium doped SiC irradiated with:

- 300MeV/c pions at the Paul Scherrer Institut
- Fluences of $10^{12} \,\pi \text{cm}^{-2}$, $10^{13} \,\pi \text{cm}^{-2}$, $5 \times 10^{14} \,\pi \text{cm}^{-2}$
- 24GeV/c protons at CERN
- Fluence of 10¹⁶ pcm⁻²

Non-Vanadium doped SI Okmetic SiC detectors not yet been irradiated

SiC I-V's and CCE's

SiC CCE

28th July 2004

J – V of Okmetic Non V Doped SiC

SiC Analysis and Summary

- > High resistivity gives low leakage current
- V dopant reduces maximum CCE due to trapping effects
- > Has good radiation hard properties compared to GaAs and Si
 - SiC CCE reduced 15% after pion irradiation
 - GaAs CCE reduced 50% after similar dose
 - Si CCE reduced 30% after similar dose

Important point:

Changes in CCE are for operation under constant

bias conditions

28th July 2004

GaN Irradiations

> SI epitaxial GaN irradiated with:

- 10keV X-Rays up to a dose of 600MRad at Imperial College
- Neutrons at Ljubljana, Slovenia
- Neutron fluences of 10¹⁴ncm⁻², 10¹⁵ncm⁻² and 10¹⁶ncm⁻²
- 24GeV/c protons at CERN at a fluence of 10^{16} pcm⁻²

Bulk GaN devices yet to be irradiated

I-V's of SI epitaxial GaN

28th July 2004

I-V characteristic of bulk GaN

800 Bulk GaN Poor non-symmetric 600 leakage values due to inhomogeneous crystal 400 (Hμ) | 200 0 -200 -200 -150 -100 -50 50 100 150 200 Ω Bias (V)

28th July 2004

CCE of SI epitaxial GaN

28th July 2004

Analysis and Summary of GaN

≻SI epitaxial GaN

- Non-linear increase in leakage current with fluence

has been observed in other widegap materials

- CCE modification at high fluences

 \sim 5 % for 10¹⁶ cm⁻² protons and neutrons

could be improved by cooling?

≻ Bulk GaN

- Diode fabricated. High leakage current. Could be explained by it's low resistivity + high density of defects

- CCE measurements to come

28th July 2004

Conclusions and Future Work

Bulk SiC reasonably promising detector material

Demonstrated potential of SI GaN for room temp ionising radiation detectors

> Fabricated bulk GaN devices. CCE measurements to be carried out

 \succ Have 12µm epitaxial GaN. Device fabrication is ongoing

Background and Motivation

> Harsh environments present a severe challenge for designers of semiconductor devices and electronics

e.g. electronics for use in space

critical systems for nuclear reactors

position sensitive detectors for particle beams

Radiation induced defects within s/c lead to

- enhanced generation /recombination currents (J_s)
- reduced charge collection signals
- drift in the operating point

Wide Bandgap Materials

> Wide bandgap materials are often advertised as being radiation hard

This arises because the large energy difference between any created defect levels and the conduction or valence band edges reduces the transition probabilities significantly. Hence any Js currents that are usually a problem with radiation damage are minimised

Fabrication (SiC)

> Pad/Guard ring structures fabricated on the 2 different SiC materials using photolithography techniques

- 100nm Ti Schottky front contact
- 100nm Ni ohmic back contact
- Si₃N₄ passivation of remaining free SiC surfaces (Okmetic SiC)

Fabrication (GaN)

≻Pad/Guard ring structures for both the Bulk GaN and SI epitaxial GaN using photolithography

- SI epitaxial GaN => 100nm Au Schottky contact
- Bulk GaN => 80nm Pd for both front and back Schottky contacts

28th July 2004