

Analysis and Simulation of Charge Collection Efficiency in Si Thin Detectors

M. Petasecca^{1,3}, F.Moscatelli^{1,2,3}, G.U. Pignatel^{1,3}

¹ DIEI - Università di Perugia, via G.Duranti,93 - Italy
 ²IMM-CNR sez.di Bologna, via Gobetti 101 – Italy
 ³INFN sez. Perugia – via Pascoli, 10 - Italy

Outline

- Introduction
- Radiation damage modelling
- Simulation of Silicon Thin structures:
 - Depletion Voltage as a function of Fluence
 - Charge Collection Efficiency as a function of thickness and Fluence

Introduction

- Simulation of thin diodes:
 - Activity included in the framework of CERN RD50 Radiation hard semiconductor devices for very high luminosity colliders - collaboration
 - Study of new structures which improve detector radiation hardness

Simulation Tool

• Simulation tool:

-ISE-TCAD – discrete time and spatial solutions to equations

• Damage modelling:

- Deep levels: E_t , σ_n and σ_p
- SRH statistics
- Donor removal mechanism
- Other effects: high density defect concentration (clusters) produces an increase of the leakage current

Three-level model

• Level characteristics*:

	Acceptor	Acceptor	Donor
E	E_c -0.42eV	E _c -0.50eV	E _v +0.36eV
σ_{p}	$8 \cdot 10^{-15} \text{cm}^2$	$10^{-15} \mathrm{cm}^2$	10^{-16} cm^2
σ_n	$10^{-16}{ m cm}^2$	$10^{-16} \mathrm{cm}^2$	10^{-15} cm^2
η	26 cm ⁻¹	0.1 cm ⁻¹	1 cm ⁻¹

Comparison between simulated and experimental data shows that results have been well reproduced

*Passeri, D.; et al. Nuclear Science, IEEE Transactions on , vol. 48 (2001).

Marco Petasecca – DIEI – University

Thin detectors

• Thin detectors have been proposed to investigate the possibility to get a **low depletion voltage** and to **limit the leakage current** of heavily irradiated silicon devices

Simulation setup

Simulated device structure and parameters:

- -Doping profiles:
 - •n-doped substrate $(7 \times 10^{11} \text{ cm}^{-3}) \rightarrow 6 \text{k}\Omega \text{cm}$.
 - •Charge concentration at the silicon-oxide interface of :
 - -4×10^{11} cm⁻³ pre-irradiation
 - -1×10^{12} cm⁻³ post-irradiation
- -Optimized variable mesh definition
- Temperature at 300 K
- Different thickness devices: $D = 20-50-100-200-300 \ \mu m$

Simulation results

fon Imaging

Glasgow – July 28 - 2004

Simulated Depletion Voltage as function of the fluence

- V_{dep} in thin structures is one order of magnitude lower than in thick one

- V_{dep} of thin diode at a fluence of 1×10¹⁵ n/cm² is about 120 V while in thick diode <u>64000 V</u> is more than 3000 V !

Simulated Collected Charge as a function of the applied Bias at 2×10^{14} n/cm² and Experimental data

Simulated data at fluence of 10¹⁴ reproduce experimental results [1] [1] M.Bruzzi et al./ Nucl.Phys.61B(98)

Marco Petasecca - DIEI - University of Perugia

Glasgow - July 28 - 2004 Maging Det

Simulated Collected Charge as a function of the applied Bias at 10¹⁵ and 10¹⁶ n/cm² Fluence

- 1. Simulated data at fluence of 10^{15} well reproduce experimental data [1,2]
- 2. The simulation of thinner structures (50-100 μ m) at higher fluence shows a saturation of the number of e-h pairs collected at the diode's electrode.

12] L Beattie et al./ NIM 412A (98) ia

Glasgow – July 28 - 2004 Maging Per

Simulated CCE as a function of the applied Bias at Fluence of 10^{15} and 10^{16} n/cm²

Simulated Charge Collection Efficiency

Glasgow - July 28 - 2004 Maging Deter

Conclusions

- Irradiated thin and thick diodes have been analyzed considering a three levels simulation model up to $\Phi{=}1{e}16~n/cm^2$
- Thin features:
 - $-V_{dep}$ in thin structures is one order of magnitude lower
 - The results suggest that an optimum thickness exists (50-100 um) which can maximize detector radiation hardness and signal-to-noise ratio.
- Next steps are:
 - compare thin structures simulation data at higher fluences (1e16 n/cm²) with irradiated diode measuring results (Bruzzi-Florence and Casse-Liverpool).

