

Energy deposition and charge transport in pixellated semiconductor X-ray detectors

Christer Fröjdh, Hans-Erik Nilsson, Börje Norlin

Mid Sweden University, Sundsvall, Sweden

2004-07-25

Departement of Information Technology and Media Electronics Group

1

- Background
 - Motivation
 - Charge deposition
 - Charge transport
- Energy deposition
 - Initial profile
 - After charge transport
- Spectral response
 - Initial spectrum
 - After charge transport
- Summary and conclusions

- Significant charge sharing has been noticed in photon counting X-ray detectors
 - Which is the dominant effect causing charge sharing in pixel detectors?
 - How large is the initial charge cloud?
 - What is the effect of X-ray fluorescence?
 - What is the effect of diffusion during charge transport?
- We have simulated charge deposition and charge transport in a number of different detectors

- Simulated structures
 - Pixel size 50 x 50 um
 - Layer thickness 500 um
 - Materials Si, GaAs and CdTe, Cd_{0.8}Zn_{0.2}Te, TIBr, Pbl₂
 - Charge transport simulated for Si and CdTe assuming Si drift parameters
 - Charge deposition simulated with MCNP4C
 - Charge transport simulated with MEDICI

Charge deposition

Linear attenuation coefficients

Charge transport

- The charge transport has been extracted using time resolved drift-diffusion simulations in MEDICI
- 3D-effects has been taking into account using cylindrical coordinates
- Ideal semiconductor materials have been assumed (no effect due to trapping etc)

Simulated pulse width for 300 um Si and a dental source

Departement of Information Technology and Media **Electronics Group**

TH^{ÖGSK}O-

I P N

Energy deposition at 18 keV

Energy deposition at 30 keV

Departement of Information Technology and Media Electronics Group

Energy deposition at 90 keV

- Pixel size 50 x 50 um
- Layer thickness 500 um
- Uniform illumination with monoenergetic photons
- Response collected from central pixel in an array of at least 20 x 20 pixels
- Energy bin size 1 keV

Spectral response at 18 keV

Spectral response at 30 keV

Spectral response at 90 keV

 Spectrum before and after charge transport for Si at 18 and 30 keV and CdTe at 90 keV

Response from Si at 18 and 30keV

Response from CdTe at 90keV

 The result for a large area detector (1 x 1 mm²) has been calculated for 30 keV and 90 keV

Response at 30 keV, over 1 mm²

Response at 90 keV, over 1 mm²

Summary and Conclusions

- We have simulated charge deposition in a number of detector materials and, in some cases, compared the initial signal to the signal collected at the readout electrodes after drift.
 - Charge diffusion is causing most of the charge sharing in the detectors
 - The initial charge cloud is very narrow, except for fluorescent photons
 - X-ray fluorescence in heavy semiconductors degrades the spectral information in the response
 - "Colour X-ray imaging" at higher energies requires methods to correlate related events in several pixels
 - In integrating systems the effect is reasonably low since the energy is spread in a large volume