Fabrication and Characterization of thin $\Delta E\textsc{-}$

Detector for Spectroscopic Application

Göran Thungström¹, Lars Westerberg², Reimar Spohr³, C. Sture Petersson^{1,4}

¹ITM, Mid-Sweden University, Sundsvall, Sweden, ²The Svedberg Laboratory, Uppsala, Sweden, ³GSI, Darmstadt, Germany, ⁴Royal Institute of Technology, Department of Electronics, Electrum, Kista, Sweden

Outline

-Introduction

- **–Detector fabrication**
- **–Processing Remarks**
- -Characterisation
- -Conclusion

Introduction

LNN

CHICSi

"CELSIUS Heavy-Ion Collision Silicon Detector System"

CHICSi—a compact ultra-high vacuum compatible detectorsystem for nuclear reaction experiments at storage rings. I. General structure, mechanics and UHV compatibility, L. Westerberg et.al., Nuclear Instruments and Methods in Physics Research A 500 (2003) 84–95

040729

040729

Department of Information Technology and Media Sensor Technology

Detector fabrication

- Si n-type <100> n^+ SiO₂
- Silicon Wafer
 - FZ
 - <100>
 - 1000 to 5000 Ωcm
 - 380 $\mu m,$ diameter 100 mm
 - N-type
 - Double side polished
 - Processing
 - Growth of 0.5 μ m SiO₂
 - Doping at 900 °C for 30 min using solid phosphorus-oxide source in N₂ ambient

- Processing
 - Re-growth of SiO₂
 - Opening of detector window 2x2 mm²

- Processing
 - Etching in 25 w% TMAH at 80 °C for 14 h.

- Processing
 - Doping of detector window by using a solid boron-oxide source at 950 °C for 30 min in N_2 followed by annealing 30 min in O_2
 - Oxide in the detector window is removed by 5% hydrofluoric-acid

- Processing
 - Electron beam evaporation of Aluminium.
 - 0.1 μm
 - Detector window metallization is patterned
 - Forming Gas Annealing 400 °C in 5% H_2 and 95% N_2 for 30 min.

Processing remarks

- Aligning marks
 - Wet etching undercut

Solution ! Etch the oxide until 1/3 of the oxide thickness remain. Cover the aligning marks with resist. After baking, continue to etch the detector windows.

040729

Characterization

IV characterization

– 8.8µm ∆E-detector

040729

CV-characterization

- Experimental setup
 - ΔE Bias: 7V
 - E detector 300 μm thickness, 200 mm², 19000 Ωcm, Bias: 40V, I_{leak}=8 nA
 - Pressure: 2*10⁻² torr
 - Preamplifiers: Ortec 142 A,B
 - Shaping Amp.: Ortec 570, 1 μs
 - Two parameter MCA

• Irradiation with alfa source

- Calibration of the E-detector
 - Energy/channel=10 keV
 - E=10*ch+134 (keV)

- Resolution of the E detector
 - $2*\sigma^2 = d^2$ (ch²)
 - R_{fwhm} =2.355* σ (ch)
 - E_{fwhm} =66 keV

- AHÖGSKO Z
- Measurement of the ∆E-E detector telescope, E-detector
 - 1) ch: 153 result in an E=1664 keV
 - 2) ch: 317 result in an E=3304 keV
 - 3) ch: 404 result in an E=4174 keV
 - 4) ch: 468 result in an E=4814 keV

- Calibration of ∆E-Detectors
 - ∆E-detectors with different thickness, irradiated with ²⁴¹Am
 - 1) ch: 645 and ∆E= 3817keV
 - 2) ch: 350 and ΔE = 2176 keV
 - 3) ch: 186 and ∆E=1263 keV
 - 4) ch: 71 and ΔE =625 keV
 - Result in a cal. Eq.
 - ∆E=5.57*ch+227 (keV)

- Estimation of ∆E-detector thickness
 - ∆X=-0.0347+7.558*E-0.441*E²-0.00565*E³
 - 1) ΔE =3817 result in ΔX =22 um
 - 2) Δ E=2176 result in Δ X=14.3 um
 - 3) $\Delta E=1263$ result in $\Delta X=8.8$ um
 - 4) ΔE =625 result in ΔX =4.5 um

040729

Department of Information Technology and Media Sensor Technology

Conclusion

- Ultra thin ∆E-detectors for spectroscopic applications has been fabricated and characterized down to a thickness of 4.5 um.
- The fabrication was in use of a common one side mask aligner.
- The detector display low leakage current and the resulting capacitance is close to the detector window capacitance below a threshold voltage
- The detector telescope should be slightly tilted to reduce the probability for channeling
- However, even better thickness uniformity is needed to improve the resolution in the ∆E-E detector telescope