Probing the Retina

Alan Litke
UC Santa Cruz
28 July 2004

1. The Retina Project

- understand the language used by the eye to send information about the visual world to the brain

2. First Results
3. Future Activities and Directions
4. Summary

Collaborators

- UC Santa Cruz:
A. Grillo, M. Grivich, S. Kachiguine, D. Petrusca, A. Sher
- AGH U. of Science and Technology, Krakow (I C design): W. Dabrowski, P. Grybos, P. Hottowy
- U. Glasgow (high density electrode array fabrication):
W. Cunningham, D. Gunning, K. Mathieson, M. Rahman
- The Salk Institute (neurobiology):
E. J. Chichilnisky, R. Kalmar

The Retina Project

- Goal: understand how the retina processes and encodes dynamic visual images
- Method: record the patterns of electrical activity generated by hundreds of retinal output neurons in response to a movie focused on the input neurons
-Technology: based on silicon microstrip detector techniques and expertise developed for high energy physics experiments - an example of the application of expertise in HEP instrumentation to neurobiology

Experimental Technique

 (based on work by Meister, Pine and Baylor)

Species?

Monkey:

- closest to human visual system (medical applications)
-large body of experimental work on monkey vision
(neurophysiology, behavior)
-But rare and precious tissue
(guinea pig retina is also being studied)

Scale?

\cdot Record from a population of neurons approaching a scale of interest for neural computation

- order-of-magnitude improvement in state-of-the-art
\Rightarrow Record simultaneously from hundreds to thousands of retinal ganglion cells in a single preparation

Electrode Array Geometries

(Electrode diameters $=5 \mu \mathrm{~m}$; area and electrode spacing given below.)

Previous state-of-the-art

M. Meister, J. Pine, D. A. Baylor, J. Neuroscience Meth. 51 (1994) 95.

61 electrodes, $60 \mu \mathrm{~m}$ electrode spacing, conventional electronics, "zebra" interconnect, tens of retinal ganglion cells simultaneously detected

Silicon Strip
 Vertex Detector: MARK II experiment at SLAC Linear Collider (512 channels/module; 18 K channels total)

Microplex readout chip
128 channels, $47.5 \mu \mathrm{~m}$ pitch (Walker, Parker, Hyams)

Parallel efforts in ALEPH, DELPHI, OPAL at LEP and CDF at the Tevatron Collider

"Neuroboard" Block Diagram

Platchip

- 64 channels; $120 \mu \mathrm{~m}$ pitch; die size $=3.3 \times 7.8 \mathrm{~mm}^{2}$
- AC coupling: 150 pF
-Platinization current: 0-1.2 $\mu \mathrm{A}$ (controlled by 5 bit DAC)
-Stimulation current: 0-150 $\mu \mathrm{A}$ (controlled by external analog signal with gain set by 5 bit DAC)

Design by W. Dabrowski et al., Krakow

Neurochip

$\bullet 64$ channels; $120 \mu \mathrm{~m}$ pitch; die size $=4.8 \times 7.8 \mathrm{~mm}^{2}$
\bullet bandpass filter: 80-2000 Hz (typical); equivalent rms input noise $\sim 5 \mu \mathrm{~V}(\sim 7 \mu \mathrm{~V}$ for complete system with saline; signal amplitude range $=50-800 \mu \mathrm{~V}$)

- sampling rate/channel $=20 \mathrm{kHz}$ (typical); multiplexer freq. $=1.3 \mathrm{MHz}$ (typical)

Design by W. Dabrowski et al., Krakow

Section of
 512-electrode Array (32x16)

Electrode diameter $=5 \mu \mathrm{~m}$

Section of 512-electrode "Neuroboard"

512-electrode "Neuroboard"

Salamander retina on 512-electrode array

Slice of hippocampal tissue on 512-electrode array

$\underline{\text { Spikes on electrodes }} \Rightarrow$ spikes from identified neurons

Neuron Identification

(signals on electrodes \Rightarrow spikes from identified neurons)

Principal Components Analysis; multidimensional clustering $\Rightarrow 4$ identified neurons

Multidimensional clustering

Average signal on each of the 7 electrodes for each of the 4 identified neurons
Neuron
Electrode \#1
E 2

Neuron ID/analysis software: D. Petrusca, Santa Cruz
$\underline{\text { measure the response properties of identified neurons }}$
\Rightarrow white noise analysis: use time sequence of random checkerboard images
$\mathrm{t}=0 \mathrm{~ms}$

$\mathrm{t}=25 \mathrm{~ms}$

$\mathrm{t}=50 \mathrm{~ms}$

$\mathrm{t}=8.3 \mathrm{~ms}$

$\mathrm{t}=33 \mathrm{~ms}$

$\mathrm{t}=58 \mathrm{~ms}$

$\mathrm{t}=17 \mathrm{~ms}$

$\mathrm{t}=42 \mathrm{~ms}$

$\mathrm{t}=67 \mathrm{~ms}$

\Rightarrow measure the "spike-triggered average"
(sta) response for each neuron

Spike-triggered Average

Monkey Retinal Ganglion Cell

Spike-triggered average image at time of maximum absolute intensity

Monkey Retinal Ganglion Cell

Spike-triggered average image at time of maximum absolute intensity

Some first (preliminary) results with monkey retina

Light-sensitive regions ("receptive fields") for 338 identified neurons

3.2 mm

Spatial/temporal response properties of individual neurons ("spike-triggered average")

Five identified monkey RGC classes (already wellknown), but this is just the tip of the iceberg.

From anatomical studies, it is estimated that there are at least 22 distinct types of monkey RGCs.

Example: 13 cell types that project to the LGN (5 known +8 new) (Dacey et al., Neuron 37 (2003) 15)

Guinea Pig Retinal Ganglion Cells: OFF cells

RF mosaic for 311 OFF cells

Direction selectivity for drifting sinusoidal gratings

RF mosaics for clusters 1-4

1	$0080000^{200 \mu m}$
	00000080
	00080000

2

4
0.08108
000880
00080
0
3

$$
\begin{aligned}
& 00800800 \\
& 0000000 \\
& 000000
\end{aligned}
$$

Neural activity recorded with 512-electrode system as image of vertical moving bar is focused on a section of guinea pig retina
(Animation repeats after 2 sweeps)

Guinea Pig Retinal Ganglion Cells: ON cells

RF mosaic for 169 ON cells
Direction selectivity for drifting sinusoidal gratings

RF mosaics for clusters 1-3

Non-DS Guinea Pig Retinal Ganglion Cells: Medium Sized

Transient	ON				$\underline{\text { OFF }}$
	$\underline{\text { Transientained }} \quad \underline{\text { Sustained }}$				

Receptive Fields

Timecourses

Mosaics

0000080	
$0_{0}^{0} 0_{0} 00_{0}$	
80	$0.0400 \mu \mathrm{~m}$

Non-DS Guinea Pig Retinal Ganglion Cells: OFF-Transient

Small

Receptive Fields

Timecourses

Electrophysiological Imaging

Future Activities and Directions

- Functional architecture/mosaic properties of monkey and guinea pig retina (with E. J. Chichilnisky, Salk Institute)
- Studies for Retinal Prosthesis (with E. J. Chichilnisky, Salk Institute)
- Retinal Development (with Marla Feller, UC San Diego)
- Cortical network dynamics in slices of brain tissue (with John Beggs, U. Indiana)

Retinal Prosthesis in Blind Subject

Implanted 4×4 electrode array; electrode diameter $=520 \mu \mathrm{~m}$, electrode spacing $=720 \mu \mathrm{~m}$

Humayan et al., Vision Research 43 (2003) 2573.

Summary

-We have developed a multielectrode system for the large scale recording of retinal ganglion cell activity - Experimental data has been obtained with live guinea pig and monkey retinas
-For the first time, it has become possible to study image processing and encoding by the retina in terms of the correlated activity of hundreds of neurons
-There are numerous classes of retinal ganglion cells, each of which appears to tile the visual field, and each of which appears to send a separate image to the brain -Potential additional applications include retinal prosthesis, retinal development, slices of brain tissue, and networks of cultured neurons

