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Introduction

Motivation: Tracking Devices Close to Interaction Region of Experiments

Use at the LHC/SLHC (or similar environments e.g. BaBar, Belle):
→ Inner tracking layers must provide high precision tracking (to tag b, t, Higgs, . . . )

→ Inner tracking layers must survive! → what does one do?

→ Annual replacement of inner layers perhaps?

Look for a Material with Certain Properties:
• Radiation hardness (no frequent replacements)

• Low dielectric constant → low capacitance

• Low leakage current → low readout noise

• Room temperature operation, Fast signal collection time → no cooling

Material Presented Here:
• Polycrystalline Chemical Vapor Deposition (pCVD) Diamond

• Single Crystal Chemical Vapor Deposition (scCVD) Diamond

On Behalf of RD42:
• Reference → http://rd42.web.cern.ch/RD42
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Introduction

Comparison of Various Materials

Property Diamond 4H-SiC Si

Band Gap [eV] 5.5 3.3 1.12
Breakdown field [V/cm] 107 4×106 3×105

Resistivity [Ω-cm] > 1011 1011 2.3×105

Intrinsic Carrier Density [cm−3] < 103 1.5×1010

Electron Mobility [cm2V−1s−1] 1800 800 1350
Hole Mobility [cm2V−1s−1] 1200 115 480
Saturation Velocity [km/s] 220 200 82

Mass Density [g cm−3] 3.52 3.21 2.33
Atomic Charge 6 14/6 14
Dielectric Constant 5.7 9.7 11.9
Displacement Energy [eV/atom] 43 25 13-20

Energy to create e-h pair [eV] 13 8.4 3.6
Radiation Length [cm] 12.2 8.7 9.4
Spec. Ionization Loss [MeV/cm] 4.69 4.28 3.21
Ave. Signal Created/100 µm [e] 3600 5100 8900
Ave. Signal Created/0.1% X0 [e] 4400 4400 8400

→ Low dielectric constant - low capacitance
→ Large bandgap - low leakage current
→ Large energy to create an eh pair - small signal
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Diamond

Diamond Growth:

Micro-Wave Reactor Schematic Edge View of pCVD diamond

(Courtesy of Element Six)

• Diamonds are “synthesized” from a plasma

• The diamond “copies” the substrate
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Diamond

Characterization of Diamond:

Signal formation

e-h Creation

Charged Particle

Electrodes

Diamond

Vbias

Amplifier

• Q=d
t
Q0 where d = collection distance = distance e-h pair move apart

• d=(µeτe + µhτh)E

• d=µEτ

with µ = µe + µh

and τ = µeτe+µhτh

µe+µh
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Diamond

Diamond Properties:

Signal formation
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• Contacts on both sides - structures from µm to cm

• Contacts typically: Cr/Au or Ti/Au or Ti/W → non-carbide formers

• Polycrystalline CVD diamond typically “pumps” by a factor of 1.5-1.8

• Usually operate at 1V/µm → drift velocity saturated

• Test Procedure: dot → strip → pixel on same diamond!
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Diamond

Recent polycrystalline CVD (pCVD) diamond.

(Courtesy of Element Six)

Left: Enhanced surface of pCVD diamond
Right: Recent pCVD wafer ready for test - Dots are 1 cm apart

Wafers can be grown >12 cm diameter, >2 mm thickness.
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Diamond

In 2000 RD42 entered into a Research Program with Element Six to increase
the charge collected from pCVD diamond.

Research Program Diamond Measured with a 90Sr Source:

• System Gain = 124 e/mV
• QMP = 7600e (62mV)
• Mean Charge = 9800e (79mV)

• Source data well separated from 0
• Collection Distance now 275µm
• Most Probable Charge now ≈ 8000e
• 99% of PH distribution now above
3000e

• FWHM/MP ≈ 0.95 — Si has ≈ 0.5
• This diamond available in large sizes

The Research program worked!
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Diamond

History of Diamond Progress

*

*Charge Collection in DeBeers CVD Diamond
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Diamond - Tracking Studies

Diamond Tracking Planes:

Photo of Two Diamond Tracking Planes PH Distribution on each Strip

channel number [ ]
0 20 40 60 80 100 120

si
g

n
al

 c
h

ar
g

e,
 t

w
o

 s
tr

ip
s 

[e
]

-5000

0

5000

10000

15000

20000

25000
CDS-90

mean values on channels

Diamond Tracker CDS-90, Signal Charge on Strips

• Use same electronics as Silicon
• Uniform signals on all strips → new metalisation
• Pedestal separated from “0” on all strips
• 99% of entries above 2000 e
• Mean signal charge ∼ 8640 e → new metalisation
• MP signal charge ∼ 6500 e
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Diamond Radiation Hardness Studies with Trackers

Proton Irradiation Studies with Trackers:

Signal to Noise

2 strip transparent signal to single strip noise [ ]
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Signal from Irradiated Diamond Tracker

• Dark current decreases with fluence
• S/N decreases at 2× 1015/cm2

• Resolution improves at 2× 1015/cm2
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Irradiation to 1016 protons/cm2 presently underway!
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Diamond Radiation Hardness Studies with Trackers

Pion Irradiation Studies with Trackers:

Signal to Noise

2-strip transparent signal to single strip noise [ ]
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• Dark current decreases with fluence

• 50% loss of S/N at 2.9× 1015/cm2

• Resolution improves 25% at 2.9× 1015/cm2
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Diamond - Tracking Studies

Radiation Hard Diamond Tracking Modules:
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• Large (2cm × 4cm) Module constructed with new metalisation

• Fully radiation hard SCTA128 electronics → 25ns peaking time

• Tested in a 90Sr → ready for beam test and irradiation

• Charge distribution cleanly separated from the noise tail → S/N > 8/1
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New Type of CVD Diamond: Single Crystal CVD Diamond

Could we make a CVD diamond with improved characteristics?

• Remove the grain boundaries, defects, charge trapping etc.
• Lower operating voltage.
• Eliminate pumping.

This is single crystal CVD (scCVD) diamond: [Isberg et al., Science 297 (2002) 1670].

CD135 - Both Sides - Pumped (Sr-90 source)
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Single Crystal CVD Diamond

HV and Pumping Characteristics
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• High quality scCVD diamond collects all the charge at E=0.2V/µ!

• High quality scCVD diamond does not pump!

But...
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Single Crystal CVD Diamond

But for Other Diamonds
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Not that easy to make!
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Single Crystal CVD Diamond

Largest scCVD Diamond:

• Began with 4mm × 4mm
• Today 7mm × 7mm
• Well on our way to 8mm × 8mm sizes!

Impurities, Defects and Dislocations: Photo-Luminescence Measurements

Left Image: High purity, no nitrogen, no dislocations.
Middle Image: Contains nitrogen - NV centre, 575 nm PL.
Right Image: Contains dislocations, broad band blue PL.

May be able to unravel the compexity of the CVD process!
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Single Crystal CVD Diamond

Charge Collection Properties: Transient Current Measurements (TCT)

• Measure charge carrier properties separately for electron and holes
• Use α-source (Am241) to inject charge

- penetration ≈ 14 µm (thickness of diamonds ≈ 470 µm)

- use positive and negative applied voltage

• Amplify ionization current

Extracted parameters: Transit time, velocity, lifetime, space charge, pulse shape, charge.

Preliminary Results: saturated velocity ve = 96 km/s, vh = 141 km/s
lifetimes ≈ 34 ns >> transit time (charge trapping not the issue)
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Applications

CVD Diamond Used or Planned for Use in Several Fields

• High Energy Physics

• Heavy Ion Beam Diagnostics

• Sychrotron Radiation Monitoring

• Neutron and α Detection

Applications Discussed Here

• Pixel Detectors
ATLAS, CMS

• Beam Monitoring
BaBar

Belle

ATLAS

CMS
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Diamond Pixel Detectors

ATLAS FE/I Pixels (Al)

• Atlas pixel pitch 50µm × 400µm
• Over Metalisation: Al
• Lead-tin solder bumping at IZM in Berlin

CMS Pixels (Ti-W)

• CMS pixel pitch 125µm × 125µm
• Metalization: Ti/W
• Indium bumping at UC Davis

→ Bump bonding yield ≈ 100 % for both ATLAS and CMS devices

New radiation hard chips produced this year.
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Diamond Pixel Detectors

Results from an ATLAS pixel detector

1 Chip Assembly

2x8 Chip Assembly (Module)

1 Chip IV Curve

IWORID 2004

July 26-29, 2004 - Glasgow, UK

Diamond (Radiation) Detectors Are Forever! (page 21) Harris Kagan

Ohio State University



Diamond Pixel Detectors

Results from an ATLAS pixel detector

1 Chip Source Test (Am241) 1 Chip Source Test (Cd109)

Americium 241 deposits ≈ 4600e
Cadmium 109 deposits ≈ 1600e
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Diamond Pixel Detectors

Results from an ATLAS pixel detector

1 Chip Beam Test (x-Resolution)
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Diamond Pixel Detectors

Results from a CMS pixel detector

Efficiency Resolution

• Results with 200µm collection distance diamond
Efficiency ∼ 94%
Spatial resolution ∼ 31µm for 125µm pitch
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Diamond Pixel Detectors

Results from a CMS pixel detector

Efficiency vs Pixel

• Inefficient pixels due to bump bonding and/or electronics - shown in pulser tests

• Excellent correlation between beam telescope and pixel tracker data!
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Radiation Monitoring - New Application - BaBar, Belle, ATLAS, CMS

Motivation:

→ Radiation monitoring crucial for Si operation/abort system of BaBar, Belle, LHC

→ Abort beams on large current spikes

→ Measure calibrated daily and integrated dose

Style:

• DC current or Slow Readout
• Requires low leakage current
• Requires small erratic dark currents
• Allows simple measuring scheme

• Examples: BaBar, Belle, CMS

• Single Particle Counting
• Requires fast readout (GHz range)
• Requires low noise
• Allows timing correlations

• Example: ATLAS
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Radiation Monitoring

The BaBar/Belle Diamond Radiation Monitor Prototypes:

• Package must be small to fit in allocated space
• Package must be robust

Schematic View

Diamond

Au Contact

In Solder
HV Insulation

Ground Braid
Kapton Insulation

Copper Shield
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Radiation Monitoring - BaBar

The BaBar/Belle Diamond Radiation Monitor Prototypes:

→ BaBar/Belle presently use silicon PIN diodes, leakage current increases 2nA/krad

→ After 100fb−1 signal≈10nA, noise≈ 1-2µA

→ Large effort to keep working, BaBar PIN diodes will not last past 2005

Photo of BaBar Prototype Devices Photo of Installed BaBar Device

BaBar device inside the silicon vertex detector.
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Radiation Monitoring - Belle

The BaBar/Belle Diamond Radiation Monitor Prototypes:

Photo of Belle Prototype Device Photo of Installed Belle Device

Belle device just outside the silicon vertex detector.

IWORID 2004

July 26-29, 2004 - Glasgow, UK

Diamond (Radiation) Detectors Are Forever! (page 29) Harris Kagan

Ohio State University



Radiation Monitoring

Results on Calibration in BaBar:

• In BaBar during injection relative to silicon diodes: 5.9mrad/nC (Feb)
• In BaBar during injection relative to silicon diodes: 5.8mrad/nC (Apr)
• Correlation coefficient unchanged over several months
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Calibration repeatable over many months
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Radiation Monitoring

Data Taking in BaBar:
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System operating for 18 months in BaBar and works well!
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Radiation Monitoring

Leakage Current in BaBar

• Diamonds have received 250kRad 60Co plus 750kRad while installed

• No observed change in leakage current (<0.1nA) or fluctuations (30pA)
• Data directly from BaBar SVTRAD system
• Electronic noise (≈ 0.5nA) substracted off
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Radiation Monitoring

Discovery of Erratic Dark Currents

It is observed the diamond current increases as the magnetic field goes off.

This happens every time the field goes off in BaBar

The Eratic Dark Currents have been reproduced in the laboratory!
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Radiation Monitoring

Discovery of Erratic Dark Currents

Eratic Dark Currents go away every time the magnetic field is turned on!

Origin is still a mystery
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Radiation Monitoring

Very Fast Time Scale (ns) in BaBar

• Use a fast amplifier to look at PIN-diode and diamond signals
• Trigger on the PIN-diode signal
• Look at fast spikes: red = diamond, black = PIN-diode

Diamond is fast enough (< 20 ns) → now used in BaBar abort system
Installation of full diamond system possible in summer 2005
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Radiation Monitoring

The CMS Diamond Radiation Monitor Program:

• Diamond activity has begun!

• Test beam emulating beam accident - unsynchronised beam abort - 1012 protons lost
in 260 ns in CMS

• Worst case 100x unsynchronised beam abort over several turns - protection requires
early detection

• Possible location in the CMS detector:

Monitors

Simulation of a Beam Accident in CMS
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Radiation Monitoring

The ATLAS Diamond Radiation Monitor Program:

• Diamond activity has begun!

• Time of flight measurement to distinguish collisions from background

• Located behind pixel detector forward disks in pixel support tube

• Possible ATLAS scenario:

Beam Condition Monitor in ATLAS
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Summary

CVD Diamond as Radiation Tolerant Detectors

• High Quality pCVD diamond (ccd up to 275 µm) are readily available in large sizes

MP signal ≈ 8000 e

99% of charge distribution above 3000 e

Attained S/N=60/1 with 2µs shaping time; 8/1 at 25ns

• Radiation Tests show tolerance up to 2× 1015/cm2

Using trackers allows a correlation between S/N and Resolution

◦ Dark current decreases with fluence
◦ Some loss of S/N with fluence
◦ Resolution improves with fluence

• Present pCVD diamonds should surpass performance of silicon at around 1015p/cm2

scCVD Diamonds May Overcome the Limitation of pCVD Material

• Full signal collection at E<<1V/µm

• Long charge lifetime
• Very little trapping- uniform detector

Many Applications Benefit from use of Diamond

• Beam Monitoring Now - BaBar, Belle
• Strip or Pixel detectors for the future
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Future Plans for RD42

• Charge Collection

Continue research program to improve pCVD material:

collection distance → 300µm (Q̄ = 10, 800e)

→ improved uniformity

→ identification of trapping centers

Begin research program on scCVD diamond

• Radiation Hardness of Diamond Trackers and Pixel Detectors

Continue tracker irradiations this year, add pixel irradiations

With Protons:

→ 5× 1015/cm2 → Now

With Pions:

→ 5× 1015/cm2

• Beam Tests with Diamond Trackers and Pixel Detectors

→ trackers with intermediate strips, SCTA128 electronics

→ pixel detectors with ATLAS and CMS radhard electronics now available!

→ construct the first full ATLAS diamond pixel module

• Material Research

→ Florence, OSU, Paris, Rome
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