Experimental Simulation of a Spectroscopic Pixel X-Ray Detector

C. Reinhart, J. Giersch, N. Uhlmann, G. Anton

Physikalisches Institut 4 Universität Erlangen-Nürnberg Germany

Overview

- Measurement
- Simulation
- Energy Weighting and Weighting Function
- Results of Simulation and Measurement
- Conclusions

Equipment

Detector material: CdZnTe size: 3 mm x 3 mm x 2 mm
Preamplifier
Amplifier in NIM-Crate
12-Channel-ADC in CAMAC-Crate
VME – Data acquisition system

\Rightarrow not the fastest equipment !

Experimental Setup

Several pixels are emulated by moving the object.

Why are these Spectra so different?

- Energy blurring caused by electronic noise and detector noise
- Blur of the threshold a discriminator triggers the signal only above a minimum threshold
- Molybdenum filter in the used X-Ray tube is a 30 µm molybdenum filter integrated

Adaptation of the Simulation

Energy- and threshold blur are estimated as a standard gauss function and multiplied with the geometrically added noise.

$$\sigma_{\text{Energy}} = \sqrt{\sigma_{\text{Electronic}}^2 + \sigma_{\text{Detector}}^2}$$
$$\sigma_{\text{Threshold}} \approx \sigma_{\text{Energy}}$$

The molybdenum filter is added between tube and object.

Christian Reinhart PI4, Universität Erlangen-Nürnberg

Energy Weighting

- is an approach to receive the benefit that photons which have additional information (e. g. energy information) are stronger weighted.

- requires the information of the energy and the location. Therefore it is the best to use a energy resolving pixel detector.

Advantages of Energy Weighting

- Improvement of the image quality at constant dose
- Reduction of the applied patient dose at constant image quality

Weighting Function

The weighting function (w_i) can be generated using tabulated absorption data.

 T_{1i} = Transmittance of the material 1 in energy bin i

 T_{2i} = Transmittance of the material 2 in energy bin i

$$T_{1i} = T_0 \cdot e^{-\mu_{1i}d_1} \implies w_i = \frac{T_{1i} - T_{2i}}{T_{1i} + T_{2i}}$$
$$T_{2i} = T_0 \cdot e^{-\mu_{2i}d_2} \qquad w_i = \text{weighting function}$$

Or it can be calculated by the simulated/measured data.

Christian Reinhart PI4, Universität Erlangen-Nürnberg

Weighting Function

Both methods are afflicted with advantages and disadvantages.

Theoretical weighting function:

- For high statstics this function yields best results
- Always useable!

Simulated/Measured weighting function:

- For a special case a better contrast will be achievable
- It is a measure for Energy Weighting

Christian Reinhart PI4, Universität Erlangen-Nürnberg

Signal-to-Noise Ratio

$$SNR = \sqrt{\left(\frac{\left(\sum_{i} \langle n_{i} \rangle \left(T_{1i} - T_{2i}\right) w_{i}\right)^{2}}{\sum_{i} \langle n_{i} \rangle \left(T_{1i} + T_{2i}\right) w_{i}^{2}}\right)}$$

 $\langle n_i \rangle$ = Number of photons in energy bin i

- T_{1i} = Transmittance of the material 1 in energy bin i
- T_{2i} = Transmittance of the material 2 in energy bin i

Theoretical Maximum SNR Improvement

Weighting function: theory

Signal-to-noise ratio improvement: 9.4 %

Results of Simulation and Measurement

Signal-to-noise ratio improvement 10 pixel

	weighting function	SNR improvement
Simulation 1	theory	32.3 %
Simulation 1	sim.	27.7 %
Measurement 1	theory	25.9 %
Measurement 1	meas.	21.6 %

...but also with high variance

	weighting function	SNR improvement
Simulation 1	theory	32.3 %
Simulation 1	sim.	27.7 %
Simulation 2	theory	-0.2 %
Simulation 2	sim.	7.2 %
Measurement 1	theory	25.9 %
Measurement 1	meas.	21.6 %
Measurement 2	theory	-10.9 %
Measurement 2	meas.	-22.9 %

100 Pixels

	weighting function	SNR improvement
Simulation 1	theory	2.7 %
Simulation 1	sim.	3.7 %
Simulation 2	theory	7.7 %
Simulation 2	sim.	8.1 %
Simulation 3	theory	5.0 %
Simulation 3	sim.	5.8 %

1000 Pixels

	weighting function	SNR improvement
Simulation 1	theory	5.3 %
Simulation 1	sim.	6.9 %

Conclusions

a) Measurement of a tube spectrum with a CdZnTe detector is possible b) Simulated spectra are near to the measurement c) The Energy Weighting technique is only workable at high statistics