Studies of bulk damage induced in different silicon materials by 900 MeV electron irradiation

<u>S. Dittongo^{1,2}</u>, L. Bosisio^{1,2}, D. Contarato³, G. D'Auria⁴, E.Fretwurst⁵, J. Härkönen⁶, G. Lindström^{5,} E. Tuovinen⁶

¹ Dipartimento di Fisica, Universita' di Trieste, Italy
² INFN, Sezione di Trieste, Italy
³ DESY, Hamburg, Germany
⁴Sincrotrone Trieste S.C.p.A., Trieste, Italy
⁵ Institut für Experimentalphysik, Universität Hamburg, Germany
⁶ Helsinki Institute of Physics, Helsinki, Finland

Overview

- Introduction: why high-energy electrons?
- Irradiation:
 - irradiated devices
 - experimental conditions
- Experimental results:
 - Effective dopant concentration
 - Reverse leakage current, damage constant α
 - Isothermal annealing effects
- Conclusions

Why high-energy electrons?

- In the last years, much effort devoted to study
 - the radiation hardness of silicon detectors against different particle types (charged hadrons, neutrons and γ rays)
 - the improvements achievable by using different silicon substrates
- By contrast, very few contributions devoted to damage induced by high-energy (GeV) electrons
- In previous irradiations, we demonstrated the effectiveness of 900 MeV electrons in creating bulk damage
- In this work we extend these investigations to a wider sample of silicon materials (standard and oxygenated float-zone, magnetic and non-magnetic Czochralski, epitaxial silicon) and by reaching very high fluence levels (6x10¹⁵ e/cm²)

Tested devices

 $p^+/n^-/n^+$ and $n^+/p^-/p^+$ diodes fabricated on different silicon substrates (thickness ~300 μ m), provided with a 100 μ m wide guard ring, surronded by floating rings

material	substrate	processed by	resistivity	[0]
FZ & DOFZ	Wacker (111) n-type	CiS (Erfurt, Germany)	3-4 kΩ· cm	1.2x10 ¹⁷ cm ⁻³ (DOFZ)
FZ & DOFZ	Wacker (111) n-type	Helsinki Institute of Physics	1.2 kΩ·cm	not measured
CZ	Sumitomo (100) n-type	CiS	1.2 kΩ· cm	8×10 ¹⁷ cm ⁻³
Magnetic CZ	Okmetic (100) n-type	Helsinki	1.0 kΩ· cm	5-9×10 ¹⁷ cm ⁻³
Magnetic CZ	Okmetic (100) p-type	Helsinki	1.8 kΩ· cm	5-9×10 ¹⁷ cm ⁻³
EPI	ITME CZ (111) n-type	CiS	50 Ω·cm	9x10 ¹⁶ cm ⁻³

Selenia Dittongo

Experimental conditions

Irradiations

- performed with the 900 MeV electron beam of the LINAC injector at Elettra (Trieste, Italy)
- fluence measured by a toroidal coil coaxial with beam
- devices kept unbiased during irradiation, at room temperature (~25°C)

step	Fluence (e/cm²)	
1	(1.06±0.01±0.04)×10 ¹⁵	
2	(1.97±0.01±0.08)×10 ¹⁵	
3	(4.16±0.05±0.17)×10 ¹⁵	
4	(4.97±0.05±0.20)×10 ¹⁵	
5	(6.11±0.02±0.25)×10 ¹⁵	

Measurements

- devices electrically characterized by reverse I-V and C-V measurements, performed ~1 day after irradiation
- C-V measurements @ 10 kHz
- currents normalized to 20°C
- isothermal annealing cycles up to 16 hours @ 80°C

Photocurrent vs. bias voltage

a quick and simple method to check for type inversion

- the diode is illuminated on the front or back side by the (dimmed) microscope light
- the I-V curve in the dark is subtracted from the I-V curve with light, to obtain the photogenerated current vs. bias voltage
- comparing the voltage dependence of the photocurrent for the two situations (front and back illumunation) helps in determining whether the substrate is inverted

Selenia Dittongo

IWORID 2004 - Glasgow, 25-29th July

Effective dopant concentration: FZ & DOFZ

type inversion occurs at:

- $\phi \sim 5 \times 10^{14} \text{ e/cm}^2 \text{ for CiS devices}$ (from previous irradiations)
- $\phi \sim 3 \times 10^{15} \text{ e/cm}^2$ for Helsinki devices (higher initial doping)

post-inversion behaviour

- lower N_{eff} variations for DOFZ devices
- N_{eff}(Helsinki devices) ~ 70-80% N_{eff}(CiS devices)

Effective dopant concentration: CZ & MCZ

p-type MCZ devices:

- substrate type inversion is not approched
- very slow rate of decrease in N_{eff} (1.2×10⁻⁴ cm⁻¹)

n-type CZ & MCZ devices:

- N_{eff} decreases, reaches a minimum at $\sim 4 \times 10^{15}$ e/cm² and then increases again
- type inversion not observed even if the preirradiation dopant concentration is comparable with FZ & DOFZ made in Helsinki
- the oxygen concentration is higher than for DOFZ (under investigation)

Effective dopant concentration: EPI

- type inversion not observed: the pre-irradiation dopant concentration is even higher than for CZ substrates...
- the variations of N_{eff} are small (<15%)
- the rate of decrease in N_{eff} is slow (1.5x10⁻³ cm⁻¹)

Leakage current & damage constant α

the increase in leakage current does not depend on substrate material (as already observed after hadron irradiations)

Annealing of leakage current

• The time evolution of the leakage current density for devices made on different substrates and irradiated at different fluences follows a common functional dependence on the annealing time

Selenia Dittongo

Annealing of $N_{eff} : \mbox{FZ}$ and DOFZ by Helsinki

- before type inversion, a maximum in the effective acceptor concentration is reached after ~15 minutes, followed by a decrease
 - in FZ device, substrate type inversion is observed after 4 hours @ 80°C
- after type inversion, a minimum in the effective acceptor concentration is reached after ~15 (FZ)-60 (DOFZ) minutes (beneficial annealing), followed by an increase (reverse annealing)

slightly higher effect in FZ devices

Selenia Dittongo

IWORID 2004 - Glasgow, 25-29th July

Annealing of N_{eff} : CZ, MCZn and EPI

EPI devices (non-inverted):

- after highest fluence (6×10¹⁵ e/cm²), show an increase of effective donor concentration with time
- variations of the order of a few %

CZ and MCZn devices (non-inverted):

- show an oscillating behaviour, observed also after hadron irradiation. Possible reasons under investigation...
- oscillation amplitude is larger at lower fluences and for CZ devices

Selenia Dittongo

Conclusions

- Leakage current: no difference is observed among different materials, as already known after hadron irradiation
- N_{eff}:
 - FZ & DOFZ: a slightly beneficial effect of oxygen diffusion is observed; both show a saturation trend beyond 4×10^{15} e/cm²
 - n-type CZ & MCZ: high fluence irradiations show that the linear trend observed at lower fluences does not continue up to type inversion; instead, N_{eff} goes back up after reaching a minimun at ~4x10¹⁵ e/cm²
 - EPI & p-type MCZ: substrate type inversion is not even approched up to 6x10¹⁵ e/cm²; very slow rate of decrease in N_{eff} (1.5x10⁻³ cm⁻¹ in EPI, 1.2x10⁻⁴ cm⁻¹ in p-MCZ)

α : comparison with other particles

• Use asymptotic value of displacement cross section for 200 MeV electrons [G.P.Summers et al., IEEE Trans.Nucl.Sci. 40(6) (1993), 1372-1378] (no higher-energy values available)

NIEL(900 MeV e)/NIEL(1 Mev n) = 8.106×10⁻²

particles	α(A/cm)		
	measured	1 MeV n equiv.	
1.8 MeV e-	4.5×10 ⁻²⁰	1.9×10 ⁻¹⁸	
900 MeV e-	9.06×10 ⁻¹⁹	1.12×10 ⁻¹⁷	
1 MeV n	4.0×10 ⁻¹⁷ (*)		

$$\frac{\alpha(900 \text{ MeV e}) / \alpha(1 \text{ MeV n})}{\text{NIEL(900 MeV e) / NIEL(1 MeV n)}} = 0.24 = \frac{1}{4.1}$$

(*) M.Moll et al., NIM, vol. A426, pp.87-93, 1999