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The LHCb Experiment – High Energy Physics Introduction

One of four experiments at LHC:

• @ CERN, Geneva

• Commissioned  April 2007

• 14 TeV p-p collisions at 40 MHz

→ 25 ns read-out time

• Study the physics of b-flavoured 
hadrons (CP-violation)

Secondary vertex

Single spectrometer arm

→ 15-300 mrad acceptance

Primary and secondary vertex resolution

→ Characteristic of b-hadrons

• Flight path in the order of mm

• Measured with precision of 100 µm

Primary vertex
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Kinematical constraints → majority of b-hadrons 
produced in the direction close to the beam-line

Angular distribution of b-hadrons

Forward direction
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The LHCb Experiment - VELO

p

20 m

p

Underground cavern

21 pairs of silicon micro-strip detector modules

Two retracting detector halves

The Vertex Locator (VELO)

beam-line

First sensitive element: 8.2 mm from beam-line

Operated in vacuum: separated from LHC 
vacuum by a 250 µm Aluminum foil.

High spatial resolution (>4 µm)

Minimal material

Radiation hardness
Secondary vertex identification used in the trigger 
→ Fast track reconstruction (1 MHz rate)
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Radiation Environment
Non-uniform radiation environment:

• Peak value: 1.3 * 1014 neq cm-2 NIEL per year
Particle flux for one year of operation tracking station 7 
(1 MeV neutron/cm2 NIEL equivalent)

Middle 
station

Far  
station

Fluence as a function of tracking station

Fluence as a function of radius

Goal: To operate two - three years with 
sufficient resolution and S/N

• Depends on z (tracking station)

• Decreases with increasing radius
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The Detector module
2 silicon types of sensors: R and Ф micro-strips

2 x 16  Read-out chips (“Beetle”):

→ IBM rad-hard deep sub-micron process

TPG substrate with carbon fibre frame

→ Kapton flex circuit laminated on each side

Contact for CO2 cooling

Low-mass, high rigidity carbon fibre paddle

Precision aluminium base plate

Readout Chips

diodes
routing lines

Silicon micro-strip sensor:

• R and Ф strips: for computational efficiency 
and occupancy

• Pitch: 40-102 µm for R and 36-97 µm for Ф

• Read-out chips out of acceptance

• Double metal for routing lines

• Silicon operating temperature: -5 °C
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Technology choices (1)

Diffusion Oxygenated Float Zone Silicon (DOFZ) is 
shown to be more resistant to charged particle radiation.

VELO will use thin (200-300 µm) DOFZ sensors 
produced by MICRON
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Depletion voltage vs. particle fluence, 1 MeV NIEL equivalent.

From ROSE collaboration (NIM A 466 pp 308-326) 

Beetle 1.3 front-end chip 

• IBM 0.25 µm CMOS process

• Rad-hard design rules

• Qualified > 30 MRad
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p-on-n silicon:

• Pre-irradiation

• Fully depleted

p-on-n silicon:

• After type inversion, under depleted

• Crosstalk to routing lines: Loss in CCE

• Degraded resolution

n-on-n silicon:

• After type inversion, under depleted

• Limited loss in CCE

Depletion fraction
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Technology choices (2)
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Current Status

Final stage of R/D

• Evaluation of a final prototype in beam-test (June 04)

• Irradiation and sub-sequent measurements in the fall 

• Verify sensor design

• Confirm radiation hardness

• Finalise the detector system

Sampling time [ns]

S/N

Example:

Optimisation of front-end chip settings
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VELO upgrade scenarios (1)

One option: Magnetic Czochralski (Cz) silicon

• Alternative to float-zone silicon - widely available in industry 

• Naturally high oxygen levels: ~1018 cm-3 (Cf. DOFZ ~1017 cm-3)

• Expected to be radiation hard

First beam-test of a large micro-strip Cz sensor with 40 MHz read-out

• 380 µm sensor, parallel 50 µm strips

• p-on-n

• Measured before and after irradiation 

Cz detector in the beam-line

VELO Silicon foreseen to last ~ 3 years

→ LHC will operate ~ 10 years

→ Performance upgrade

Many different upgrade scenarios under discussion

→ n-on-p, 3D, Cz silicon, strixels, pixels …
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VELO upgrade scenarios (2)

Results:

• S/N before irradiation: 23.5 ± 2.5 for 380 µm 

• S/N after irradiation: 11 for 380 µm

→ Corresponding to two years of VELO operation 

→ Under-depleted

→ Low statistics

We aim to continue investigating this 
track as a possibility for a VELO upgrade
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Summary

LHCb Vertex Locator

• Exciting application of rad-hard silicon sensors

• Technology choices (DOFZ and n-on-n)

• Final R/D phase – commissioned April 2007

• Vision of one upgrade track


