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Physics Goals
• Study extremely hot and dense matter (as in the early Universe)

by colliding heavy nuclei at ultrarelativistic energies
and analyzing the spectrum of the produced dimuons.

• QCD: phase transition above a critical temperature or energy density from hadronic
matter to a state of deconfined quarks and gluons (Quark Gluon Plasma)

To see if… observe… by… This requires…

chiral symmetry   
is restored,

changes in the
shape of ρ

resolving resonances at 
different collision 
centralities.

good 
momentum 
resolution and 
high statistics.

thermal
equilibrium is 
reached,

thermal  
dimuons

distinguishing them from
displaced charm decay
dimouns.

excellent 
vertexing
precision.

charmonia (cc̅) 
are dissolved,

their suppression
with increasing
centrality

counting them at different 
collision centralities.

high statistics 
and centrality 
measurement.
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Objectives and Requirements

NA60’s innovation

High-energy 
(nuclear) collisions

Dimuon
production

Small
cross-section

High 
statistics

Radiation 
tolerance Fast readoutGranularity

High-multiplicity
environment

High 
precision

High 
luminosity
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Measuring Dimuons in the Target Region

hadron absorber

muon trigger and tracking

m
agnetic field

vertex spectrometer
in a 2.5 T dipole

targets

beam tracker
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Measuring Dimuons in the Target Region

hadron absorber

Matching in coordinate and momentum space

muon trigger and tracking

m
agnetic field

vertex spectrometer 
in a 2.5 T dipole

targets

beam tracker

or

prompt dimuon

muon pair from
displaced vertices

Origin of muons can be accurately determined

Improved dimuon mass resolution
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The Silicon Vertex Spectrometer

DIPOLE MAGNET

HADRON ABSORBER

TARGETS

1 cm

~1 m

• eight 4-chip planes 
• eight 8-chip planes 

(two for one space point)
• 11 space points for tracking
• inside a 2.5 T dipole magnet
• chips on ceramic hybrid
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The Readout Chip      The Sensor Chip

• 300 μm thick
• 32 × 256 pixels of 425 μm × 50 μm
• p implants on n bulk

• 750 μm thick
• 32 × 256 pixels of 425 μm × 50 μm
• operated at 10 MHz
• 32 columns read out in parallel
• radiation tolerant architecture
• designed for ALICE and LHCb

by CERN Microelectronics Group

Bump-bonded together
with 25 μm solder bumps
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The Silicon Vertex Spectrometer

×8
×8
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Pixel Telescope Vertexing
Data collected  in October 2003 with 158 GeV Indium beam

ZZ--vertexvertex
determination
from pixel telescope

σz = 300 µm

Beam tracker sensors

Target box windows
In targets

Transverse coordinatesTransverse coordinates
measured
by the pixel telescope
and the beam tracker

σbt ~ 20 µm → σpt ~ 18 µm
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Dimuon Mass Spectrum in Indium-Indium Collisions

The combinatorial background resulting from π and K decays 
is estimated through a mixed-event technique, using like-sign 
muon pairs. The fake matches are not yet included.

S/B ~ 1/4

no centrality selection

opposite-sign
combinatorial background
signal

less than 1 % of total statistics

ω
φ

mass resolution: 25 MeV at M ~ 1 GeV
(would be ~80 MeV without pixels)

PRELIMINARY
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The Effects of Radiation in Silicon

Ionizing Energy Loss (charged particles, photons)
transient effect
signal creation

Non-Ionizing Energy Loss (especially hadrons)
causes permanent bulk damage
depends on particle type, energy ⇒ normalize to 1 MeV n 
(one 1 MeV neutron equivalent to 2 high-energy hadrons)

increases leakage current
degrades charge collection efficiency
changes effective doping concentration
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Fluences in the 2003 Indium-Indium Run
5 × 1012 Indium ions on the 20% λint target during 5 weeks
Fluences

estimated with FLUKA MC simulator 
measured with Si pin diodes and activation of Al rings during 2 weeks 
(1.6 × 1012 In ions on target)

⇒1012 − 5 ⋅1013 1MeV neq/cm2 during the 5 weeks, depending on position
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Leakage Current
permanently monitored
increase proportional to fluence:   ΔI / V = α Φ
strongly temperature dependent:    I ∝ T2 exp( -Egap / 2kT )

temperature regulated with cold water cooling
temperature monitored with Pt100 sensors
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Change in Effective Doping

type inversion
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Doping and depletion voltage in a weakly n-doped bulk

radiation decreases effective doping concentration in n-type bulk
⇒ bulk eventually becomes effectively p-type (type inversion)
⇒ p-n junction moves from p+ implants to n+ back plane
⇒ full depletion necessary to prevent pixels from being short-circuited
⇒ depletion voltage decreases until type inversion, then increases
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Observation of Type Inversion
Hit maps taken during a 

bias voltage scan after 4 weeks
pixels at small radii receive 
more fluence

⇒ after type inversion expect 
the depletion voltage to      
increase toward small radii

⇒ lowering the bias voltage
should leave an ever larger
area not fully depleted 
(i.e. practically dead) 0
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Observation of Type Inversion
Hit maps taken during a 
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pixels at small radii receive 
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Observation of Type Inversion
Hit maps taken during a 

bias voltage scan after 4 weeks
pixels at small radii receive 
more fluence
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the depletion voltage to      
increase toward small radii
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should leave an ever larger
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Observation of Type Inversion
Hit maps taken during a 

bias voltage scan after 4 weeks
pixels at small radii receive 
more fluence

⇒ after type inversion expect 
the depletion voltage to      
increase toward small radii

⇒ lowering the bias voltage
should leave an ever larger
area not fully depleted 
(i.e. practically dead) 0
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Observation of Type Inversion
Hit maps taken during a 

bias voltage scan after 4 weeks
pixels at small radii receive 
more fluence

⇒ after type inversion expect 
the depletion voltage to      
increase toward small radii

⇒ lowering the bias voltage
should leave an ever larger
area not fully depleted 
(i.e. practically dead) 0
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Observation of Type Inversion
Hit maps taken during a 

bias voltage scan after 4 weeks
pixels at small radii receive 
more fluence

⇒ after type inversion expect 
the depletion voltage to      
increase toward small radii

⇒ lowering the bias voltage
should leave an ever larger
area not fully depleted 
(i.e. practically dead) 0
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Observation of Type Inversion
Hit maps taken during a 

bias voltage scan after 4 weeks
pixels at small radii receive 
more fluence

⇒ after type inversion expect 
the depletion voltage to      
increase toward small radii

⇒ lowering the bias voltage
should leave an ever larger
area not fully depleted 
(i.e. practically dead) 0
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Change of Radiation Damage After Irradiation
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Change of effective doping concentration
first the damage 
diminishes (annealing )
after some time the  
damage increases 
(reverse annealing )
these effects are strongly 
temperature dependent

After the end of run, detector was kept at room T for a   
month to take full advantage of the beneficial annealing.
Since then it has been in a freezer at -25 ℃ to slow down    
the detrimental reverse annealing.
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Summary
The silicon vertex spectrometer has met the requirements of

high speed,
high granularity and
radiation tolerance

imposed by the broad and ambitious physics program of NA60.

Successfully operated a silicon pixel detector in a high-radiation environment for 5 weeks.
Detector sustained fluences of 1012 to 5 ⋅1013 1MeV neq / cm2

Effects of radiation damage monitored throughout the run. 
Predict useful life time to extend half way into this year’s proton run.

Collected in Indium-Indium collisions
1 million low-mass dimuons (after muon track matching)
105 J/Ψ events (before muon track matching)

Analysis of a small sub-sample of the In-In data shows
σx,y ≈20 μm and σz ≈300 μm vertexing precision
~25 MeV mass resolution at ρ and ω

—unprecedented in fixed-target heavy-ion experiments.
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