

The LHCb Silicon Tracker

Helge Voss for the LHCb Si-Tracker

- Introduction
- •Inner Tracker design
- TT-Station design
- Test results

LHCb Introduction

LHC: "b-factory" with 10¹² bb/year pp@14 TeV, lumi=2•10³² cm⁻²s⁻¹ (compared to 10⁷ at Ψ(4S)) access to full B spectrum B_d, B_s

LHCb: single-arm forward spectrometer dedicated to B-physics acceptance: 15-300(250)mrad:

> CP violation and other rare phenomena in the B-system

LHCh

Helge Voss

• high track density near the beam pipe

good spatial resolution

 \rightarrow good hit matching between VELO and the two TT half stations

 \rightarrow good minimum bias retention in second level trigger TT

Inner Tracker

4 individual boxes per station
4 layers per station: (2 stereo layers)
→336 modules: 11 and 22cm long
129k readout channels on 4.3m² silicon

operation at ~5°C

 liquid cooling system for cooling hybrid and sensors

thermally conductive CF support

box enclosure lightweight isolation
foam + Al foil for electrical shielding

Inner Tracker Modules

p-n silicon micro-strip sensors (HPK) 108 mm long strips, 384 readout strips 197μm pitch, w/p=0.25, 320 (410) μm thickness

readout hybrid with 3 Beetle chips (40MHz,128channels, multiplexed on 4 readout ports, pipelined 183BX, 0.25µm CMOS)

LHCb

- 4 layers in 2 half stations, 2 layers $\pm 5^{\circ}$ stereo angle
- 280 readout sectors, 143k readout channels on 7.9m² silicon
- readout sectors with 1,2,3 and 4 sensors
- all readout hybrids at the edge outside of the acceptance
- inner modules connected via Kapton interconnect cables
- both stations enclosed in one box, operated at $\sim 5^{\circ}C$

TT-Station Modules

The Challenges

- moderate spatial resolution requirement (~60µm)
- moderate radiation environment. After 10 years: 1 (5) Mrad or 9.10¹² (4.5.10¹³)cm⁻² of 1-MeV Neut.equiv. in IT (TT)

<u>But:</u>	
minimize: R/O channels	 ⇒ large pitch O(200µm) (charge collection) ⇒ long strips 38cm (55pF) or (28cm+40cm Kapton 57pF) (noise)
40MHz, fast readout choose minimal material	⇒ (noise) ⇒ "thin" sensors (little charge)

CERN test-beam

Test Setup

and IR-laser

<section-header>

testing of:

- ladders with 3 TT(CMS-OB2), GLAST and LHCb-IT sensors (~30 cm)
- \cdot 2, 1 sensor ladders with LHCb-IT sensors
- \cdot 1 LHCb-IT sensor irradiated to equiv. of 10year LHCb running
- · 1 TT (CMS-OB2) sensor + 60cm Kapton flex cable (\rightarrow laser only)
- 3 TT (CMS-OB2) sensors + 40cm Kapton flex cable

Spatially resolved S/N

- MPV S/N from fit Landau \otimes Gaussian
- charge loss in interstrip region
- ensure sufficient S/N
 over the whole sensor
 →thickness

- good understanding of noise behaviour w.r.t. load capacitance, thickness, pitch and w/p
- extrapolation to 4 sensor ladder and
 3 sensor + Kapton flex ladder
- → comparison with this year's testbeam data look promising

Helge Voss

Summary

- LHCb Si-Tracker uses silicon strip detectors with large pitch of ~200µm long strips up to 38cm or 28cm+40cm Kapton cable fast readout O(25ns)
- presented the current design of the TT station and the Inner Tracker
- (preliminary) test results show modules fully meet our expectations sufficiently fast signal → pulse-shape sufficient signal → S/N in inter-strip region results on irradiated sensors are still to come