A Silicon Vertex Tracker Upgrade for the PHENIX Experiment at RHIC

- RHIC and PHENIX in Brief
- Physics Goals & Detector Upgrades
- Silicon Vertex Tracker:

Concept and Status of Preparations

Johann M. Heuser, RIKEN for the PHENIX Collaboration

International Workshop on Radiation Imaging Detectors, Glasgow, July 25-29, 2004

PHENIX at the Relativistic Heavy Ion Collider

PHENIX:

- large high-rate experiment, specifically designed to detect hadrons, leptons, photons & rare electromagnetic probes
- 4 spectrometer arms
- > 400 internat`l collaborators

RHIC:

- 3.83 km circumference
- two independent rings
 - up to 120 bunches/ring
 - 106 ns crossing time
- energy:
 - up to 200 GeV for Au-Au (per N-N collision)
 - up to 500 GeV for p-p
- luminosity:
 - Au-Au: 2 x 10²⁶ cm⁻² s⁻¹
 - p-p (pol.): 2 x 10³² cm⁻² s⁻¹

The PHENIX Detector

Central Arm Tracking

- Drift Chamber
- Pad Chambers
- Time Expansion Chamber

Muon Arm Tracking

Calorimetry

- PbGl
- PbSc

Particle Id

- Muon Identifier
- RICH
- TOF
- TEC

Global Detectors

- BBC
- ZDC/SMD
- Local Polarimeter
- Forward Hadron Calorimeters
- NTC
- MVD

PHENIX - View in the Experimental Hall

PHENIX – Physics Program

Relativistic Heavy Ion Physics:

- Detection of Quark-Gluon-Plasma state of nuclear matter in Au-Aucollisions at √s_{NN}=200 GeV.
- Access leptonic, photonic, hadronic probes in the same experiment.
- **RHIC I:** focus on confirmation of QGP. \rightarrow **ongoing**
- RHIC II: detailed study of its properties.
 - → 2nd half of this decade !! detector upgrades !!

Spin Physics:

- Study spin composition of nucleon. Collisions of polarized proton beams at √s_{NN}=200-500 GeV.
- Main goal: gluon polarization.
- Probes: high-p_T photon production, jet and heavy flavor production.

 \rightarrow ongoing **!!** detector upgrades **!!**

Run	Year	Collision System	√s _{NN} [GeV]	
01	2000	Au-Au	130	commissioning
02	01/02	Au-Au	200	RHIC at full energy
		p-p	200	first p beams
03	02/03	d-Au	200	PHENIX baseline detector completed
		р-р (ро	l.) 200	first pol. p beams
04	03/04	Au-Au	200	RHIC at full luminosity
		Au-Au	62	······
		р-р (ро	I.) 200	
05	04/05	lighter tha Au-Au	an 200	PHYSICAL REVIEW LETTERS 14 January 2002 Videor M, Nanher 2
List of published results: http://www.phenix.bnl.gov/results.html				

PHENIX – Detector Upgrades

J.M. Heuser

The PHENIX Silicon Vertex Tracker

Mechanical Specifications:

4-layer Barrel at central rapidity:

layer radius	2.5, 5, 10,14 cm
layer length	24, 24, 30, 36 cm
pixels (layers 1+2)	10+20 modules, ~3.9 M pixels
pixel size	50 μm x 425 μm
strip-pixels (layers 3+4)	18+26 modules, ~378 K r/o ch.
strip-pixel size	80 µm x 1 mm (3 cm)
azimuthal coverage	~320 deg

4-layer Cones at forward rapidity:

2.5 cm
18 cm
20, 26, 32, 38 cm
50 µm x 2.2-13 mm
~2.0M
360 deg

Vertex Tracker – System Integration Study

Physics with the Silicon Vertex Tracker

 Detailed study of the hot, dense matter formed in heavy ion collisions: Potential enhancement of charm production. Open beauty production. Flavor dependence of jet quenching and QCD energy loss. Accurate charm reference for quarkonium. 	 Study of the gluon spin structure of the nucleon in polarized p-p collisions: Gluon polarization ΔG/G with charm, beauty. <i>x</i> dependence of ΔG /G with γ-jet correlations. Sea-quark polarization. Transverse spin structure distributions δq.
 Thermal dilepton radiation. High-p_T phenomena with light flavors, p_T >10-15 GeV/c. Upsilon spectroscopy, e⁺e⁻ decay channel. 	⇒ Key issue: Precision track measurement on vertex level.
 Nucleon structure in nuclear environment: Nuclear dependence of PDFs. Saturation physics: Gluon shadowing over broad x-range. 	 Physics at forward rapidity: Open charm, bottom contribution to J/ψ production in μ⁺μ⁻ decay channel. Larger <i>x</i>-range for measurement of gluon spin structure function. Open charm, beauty in pol. p-p collisions.

Silicon Tracker - Simulated Performance

J.M. Heuser

Silicon Pixel Detectors

Silicon Pixel Detector - Ladder Production

Production volume: 30 modules, 120 sensor ladders \Rightarrow **480 ALICE1LHCb chips. Ongoing** comprehensive quality Yield from 86 chips/ 8" wafer 4 wafers tested out of 16+X acceptance tests of readout chips ABA4J4T Class-Wafer ID Class-II Class-III prior to bump bonding: ARA4.14 36 14 36 69 70 58 57 60 35 AAA4.19 42 **RIKEN** wafer probe station installed at CERN, equipped with a test 13 25 48 system developed by ALICE. 38 23 26 Class-I chips passed all tests 134 Total 59 152 and go into ladder production. 5" WAFER CANBERRA of chip ATRA J IRAZE First batch of ladder sensor noise ~ 120 e Number Number production at VTT in wafers; August 2004. delivery 15 F 6F 7/2004. 10 9 sensor 5 ladders per 500 1000 1500 2000 2500 3000 3500 wafer. 0 mean threshold/chip [e]

Silicon Pixel Detector: Readout

Strip-Pixel Detectors

Silicon Tracker at Forward Rapidity

⇒ Conceptual design to be presented at the IEEE Nuclear Science Symposium 2004 in Rome.

Summary

- Physics motivation, technical concept and beginning construction of the PHENIX Silicon Vertex Tracker was outlined.
- The Silicon Vertex Tracker is an important upgrade of the PHENIX detector and will extend its physics capabilities to new observables for the physics program at RHIC II and the polarized proton physics program.
- The technical proposal document for the barrel detector layers at central rapidity has been submitted. The prototyping and production of its detector components have started. The full detector in PHENIX is aimed at for the year 2007/8 (Run 8).
 - Pixel detectors: are essential in the inner two layers to achieve the spatial resolution for secondary vertex measurement.
 Due to short time scale until they are needed: Focus on the application of up-to-date established technology. Utilization of CERN-ALICE hybrid pixel detectors as the building block for PHENIX specific pixel detector modules.
 - Novel "Strip-pixel" detectors in the outer layers are essential for the track reconstruction and help with linking the tracks to the central spectrometers.
- A proposal for the end-cap vertex tracker at forward rapidity will be presented soon. The application of this device is aimed at for around the year 2008/9.

