

Rainer Wallny, UCLA

University of California, Los Angeles

on behalf of the CDF Silicon Operations Group

6th International Workshop on Radiation Imaging Detectors Glasgow, UK 25th-29th July, 2004

Tevatron Run II Upgrade

- Original Tevatron Design (Run "0"):
 10³⁰ cm⁻² s⁻¹
- Run I (ended Feb 1996)
 - Lum $\sim 2.5 \times 10^{31}$ cm⁻² s⁻¹
 - CDF integrated 110 pb⁻¹
- Run II Upgrades:
 - Main Injector (factor of ~5)
 - Improved pre-acelerator to TeV
 - Higher pbar production efficiency
 - Recycler (factor of ~2)
 - High capacity antiproton storage device
 - Electron cooling (being commissioned)
 - 36x36 bunches at 396 ns
 - √s = 1.96 TeV (was 1.8 TeV)
 => Currently the World's highest
 - energy collider Final goal 2-3 x 10³² cm⁻² s⁻¹
- Increased demand on detector as regards readout speed, radiation hardness and capability to handle multiple interactions @ high luminosity

Run II Physics Goals:

- Properties of top quark
- Precision Electroweak Physics
- CKM, B_s Mixing
- . Searches for new phenomena
- . Tests of QCD

http://www.fnal.gov/pub/today/archive_2004/today04-07-22.html

July 27th, 2004

Rainer Wallny - Status of the CDF Run II Silicon Detector 3

CDF Run II Detector

CDF Run II Silicon Upgrade

Detector Goals: Heavy flavor tagging efficiency B reconstruction efficiency Increased Forward Tracking Acceptance Improved σ_{d0} (~20 µm) Run II Silicon: 7-8 silicon layers 722,432 channels $r\phi$, rz views $z^{max} = 45$ cm, $|\eta|^{max} = 2$ 1.3 < r < 30 cm

Baseline Upgrade: SVX II

Note wedge symmetry

- 5 Double-sided layers
 - 5 axial, 3×90°, 2×1.2°
- Tight Alignment Tolerances
 - For displaced track trigger
- Highly Symmetric
 - 12-fold in ϕ
 - 6-fold in z

Upgrade to the Upgrade: ISL

1.9 m

- One central layer ($|\eta| < 1$)
 - Link tracks from Drift Chamber to SVXII
- Two forward layers ($1 < |\eta| < 2$)
 - Silicon tracking in forward regions
- Simpler Design
 - Not used in trigger (less stringent alignment)
 - Hybrids mounted off silicon
 - One kind of double-sided sensor flavor

Upgrade more... LOO

- Precision position measurement before scattering in dead material
- Single-sided layer mounted on beam pipe
 - 25 μ m pitch; every other strip read out
 - Low material budget (0.6% 1.0% X₀₎
 - Actively cooled
 - Electronics at either end, larger radii
 - Rad hard silicon; capable of 500V bias (will outlast SVXII inner layer LO)

Operational Experience

Si Performance: Charge collection

S:N	Φ	Z
L00	10:1	
SVX	14:1	12:1
191	12.1	12.1

S/N as designed Charge collection efficiency > 99% p-n side charge correlation

Rainer Wallny - Status of the CDF Run II Silicon Detector 10

July 27th, 2004

COT-Si "Outside-In" tracking

SVX is aligned in $r - \Phi$

Rainer Wallny - Status of the CDF Run II Silicon Detector 11

Secondary Vertex Tagging

- b-tag efficiency already better than Run I
 - e.g. ~55% tag rate for events containing top quarks
- Tag efficiency will further increase as the full power of the detector is utilized
 - Tracks used to form vertex currently limited to $|\eta|$ < 1.1
 - Forward tagging with ISL will allow tracks to |η| < 2.0
 - Visible degradation of tag rate where SVXII has gaps and/or passive material
 - This will be compensated for when LOO hits are used in tagging

Performance: LOO

Expected Detector Lifetime

 Silicon will die either due to inability to deplete sensor or degraded Signal-to- Noise (S/N) due to high shot noise

 model calculations predict that SVX L0 sensors will have to be operated underdepleted at ~6 fb⁻¹ of integrated luminosity (design goal ~ 8 fb⁻¹)

- BUT: Model calculations have large uncertainties
- \Rightarrow Need to monitor radiation damage via
 - Increase in leakage current
 - change of full depletion voltage V_{dep}

RunIIb TDR "Safe Lifetimes" prediction for RunIIa silicon detector

Ageing Studies: Depletion Voltage in LOO

- Measure depletion voltage vs. delivered luminosity
 - Vary bias voltage during data taking
 - Reconstruct tracks; associate cluster
 - Fit path-length corrected charge distribution for each voltage to Landau; extract most probable value
 - Fit most probable value of Landau vs.
 voltage to extract depletion voltage (95% of asymptotic value)
- Average over all Hamamatsu sensors (wides) is ~ -39 ± 6 V/fb⁻¹
- No measurable change yet in SGS Thompson sensors (narrows)
- Systematic uncertainties of the method still under investigation
- Method works before and after type inversion
- requires substantial amount of beam time

Alternative Method: Noise vs Bias Scan

- In double sided silicon sensors, noise exhibits a dip as a function of bias voltage as p-stops separate at ~V_{dep}
 - $\Rightarrow~$ Track V_{dep} as a function of luminosity and determine rate of change dV/dL
- Method does not require beam time
- Can't be used for LOO (single-sided)
- Won't work after type inversion.

July 27th, 2004

Rainer Wallny - Status of the CDF Run II Silicon Detector 16

Conclusion

- Commissioning the CDF Run II Silicon detector took a longer time than expected and several challenges needed to be overcome.
- Detector is stable since ~2 years and provides high quality physics data.
- Detector performance parameters are as expected and detector potential is almost fully exploited.
- Radiation damage is visible and monitoring methods have been or are being developed. Results so far consistent with expectations.
- Keeping a 722k channel detector operational provides a continuous challenge to the Collaboration – there is no such thing as a free lunch.

Backup Slides

Detector Lifetime: Radiation Damage

- o Si Detector upgrade cancelled
- o >500 pb⁻¹ delivered→radiation damage measurable
 - Increase in sensor leakage current visible
- o How long can current one run?

	∆I/ ladder [μA]	RMS [μA]	Fluence 1 MeV n 1E12 /cm²/fb ⁻¹
Layer 00	6.47	1.93	20
Layer O	10	1.99	9.3
Layer 1	8.1	2.00	5.1
Layer 2	5.2	2.94	2.4
Layer 3	5.88	1.60	1.8
Layer 4	4.37	2.41	1.2

July 27th, 2004

Rainer Wallny - Status of the CDF Run II Silicon Detector 19

The SVX3D Chip

Analog Front End (FE) and Digital Back End (BE)

- FE has low noise integrator with 128 channels and 42 cell analog pipeline with 4 buffer cells
- BE has comparator, ADC, and sparse readout

Dead-timeless:

- Capable of analog operations during digitization and readout

Dynamic pedestal subtraction (DPS)

 Enables common mode noise suppression

Dynamic Common Mode Suppression

July 27th, 2004

Rainer Wallny - Status of the CDF Run II Silicon Detector 21

Pickup on LOO Signal Cables

Rainer Wallny - Status of the CDF Run II Silicon Detector

Solution: Fit for Pedestal

- Problem solved offline
 - Readout all strips in LOO
 - Use this information to fit for an event-by-event pedestal
 - χ^2 fit to Chebyshev polynomials
 - Tested by embedding MC clusters in data
 - 95% efficiency with 95% purity
 - No impact on cluster size or centroid resolution
 - Implications for CDF
 - LOO can't be in online track trigger
 - Readout time may be a bottleneck

ISL Cooling Lines

- Unable to cool central part of ISL:
- . Solid blockage of Al lines experienced
- Appears at Al elbows (glue blockage seen with boroscope)
- . Laser successfully opened 11/12 lines
 - PMT used for targeting to find glue

Finding the glue

- 40W IR laser was used to find and remove the glue
 - Fused silica fiber optics & prisms used to direct the light
 - Targeted with 2 Joule pulses (determined safe for Al lines on bench)
 - Scattered light was observed with PMT
 - Glue burning had 'afterglow'
 - Glue was burned out with 6 Joule, 3 ms pulses
 - No lines were damaged
 - 11/12 lines cleared
 - Last line blocked by stuck prism
 - Silicon cooled by cleared lines now takes good data

"Jumper" Failures

- The jumper routes control, power and data from r-φ to r-z electronics
- Loss of digital power through jumper due to:
 - Aging effects (e.g. vias)?
 - No evidence in accelerated aging tests
 - Fusing digital wire-bonds?
 - Not reproducible in tests
 - Analog bonds carry more current
 - Power supplies and local capacitors cannot supply required energy (~100mJ)

- Mechanical damage (fatigue) to wire-bonds from Lorentz forces?
 - Jumper bonds are orthogonal to magnetic field
 - Digital bonds are unique in that current draw is dynamic
 - + Δ I_max} occurs when readout shifts from r- ϕ to r-z chips
 - Force applied with frequency \sim trigger rate

Resonant Lorentz Forces

- Resonance would accelerate fatigue
 - Fundamental frequency for 2 mm
 AlSi bond ~ 15 kHz
- We visually searched for resonance using test bonds in 1.4T field
 - Drive w/ sinusoidal AC
 - First resonance observed
 - ~19 kHz w/100 mA
 - Bonds move several times the wire diameter (~100 um)
 - Scan current (10mA-150mA)
 - Resonance present even at 10 mA.
- After exposure to resonance for minutes-hours, bonds break
 - Break occurs at foot of bond
 - Break is due to fatigue
- Tests confirmed with real modules driven by real DAQ

Final Confirmation

- Using actual spare SVXII ladders and real CDF DAQ and real power supplies
 - Configured DAQ to readout silicon with a definite frequency
 - Scanned these frequencies, looking for resonances
 - After several days of testing ... DVDD jumper bond broke!

Wirebond Resonance Mitigation

- A synchronous trigger condition detector is now operational in CDF to avoid wire bond resonances
 - Performs FFT analysis of of L1 trigger rates
 - Halts DAQ via Silicon Readout Controller
 - Based on dedicated FPGA : board
 - DAQ code analyzes possible cause of synch. trigger conditions.
- System has been thoroughly tested currently being migrated from prototype board to full 8 channel system
- Currently running successfully @ 25 kHz L1A rate.

Beam Incidents

• Beam incidents are a major threat the silicon system

• Several interlock systems in place to mitigate risks – but some components of the TeV run at the limit of their specifications and occasional malfunction cannot be avoided (i.e. abort kicker prefires)

Run IIb Upgrade

- Run II original plan: 15fb-1
 - Would need to upgrade inner silicon.
- Simplified design: Only two varieties of stave and hybrid (beampipe-mounted LO, "SVX")
- Only single-sided sensors
- All wirebonds encapsulated
- SVX4 chip more rad hard, included capability to remotely switch off channels
- Due to revised RunIIb luminosity, project cancelled September 2003

