Sept.25-26, Villars Meeting

Production of Ultra Slow Antiproton Beam and A Cusp Trap for H Synthesis

> Y.Yamazaki On behalf of MUSASHI Group, ASACUSA Collaboration

Why intense ultra-slow/trapped ps?

- Atomic physics of "Heavy Electron"
 Ionization by p vs p
 pA+ Formation : exchange between p & e⁻
 pA+ : A new probe of nuclear structure
- 2. Atomic physics of Antimatter

H Formation

CPT symmetry with H vs \overline{H} (1S-2S, HFI, gravity)

- 3. Non-neutral plasma physics
- 4. Antimatter chemistry: \overline{H}_2 , \overline{H}^+ , \overline{H}_2^+ , etc.

Double ionization of He

- P (\overline{p}) + He → p (\overline{p}) + He⁺⁺ + e⁻ + e⁻
- a few body system just Coulomb force

small "Z"

weak perturbation

however · · ·

→ After 20years $\sigma^+(\overline{p})+\sigma^{++}(\overline{p})=\sigma^+(p)+\sigma^{++}(p)$ by T.Morishita & S.Watanabe

FIG. 3. The cross sections measured in this work. L.H.Andersen et al., PRL57 (1986)2147, PRA38(1988)395

r _p

Annihilation of p in pA

$$\overline{P} \ \mathbb{Z}^{2+} \left(\begin{array}{c} p \\ p \end{array} \right) + \mathbb{Z}^{-1} A^{(2-1)+} \\ (pn) + \mathbb{Z}^{-1} A^{2+} \end{array} \right)$$

Branching ratio : nucleon distr.

Recoil momentum: Fermi motion

Dynamics of Non-neutral plasma with ps

Plasma heating & cooling feature \overline{p} :1x10⁶, e⁻:3x10⁸, $\Delta T \sim 0.6 eV$, $\Delta t_{rise} \sim 5 sec$, $\Delta t_{cool} \sim 30 sec$ N.Kuroda et al.

Non-neutral plasma dynamics

M.Fujiwara et al., PRL92(2004)065005

Separation of two component plasmas

Antiproton plasma

H Production

(1)
$$\overline{p} + e^+ \rightarrow \overline{H} + hv$$

(2) $p + e^+ + nhv \rightarrow \overline{H} + (n+1)hv$
(3) $p + e^+ + e^+ \rightarrow \overline{H} + e^+$
(4) $p + (e^+e^-) \rightarrow \overline{H} + e^-$
(5) $p + A \rightarrow \overline{H} + e^- + A$

Realized by ATHENA & ATRAP

A new scheme to synthesize & trap \overline{H} : cusp B-field + octupole E-field

No instability in the cusp field Magnetic bottle for neutral particles Relaxation time to 1S state of \overline{H}

Trajectories of 0.086meV $\overline{H}(1S)$

θ=80°

 $\theta = 60^{\circ}$

θ=40°

θ=20°

θ= 5°

sum

H beam focused, intensified by 400 times

More than 99% spin polarized

p magnetic moment measurement

Simultaneous confinements of \overline{p} , e⁺, AND \overline{H}

Automatic cooling

Intensity-enhanced Spin-polarized \overline{H} beam

 $\mu_{\overline{p}}$ determination ppm or better

Antiproton Decelerator (AD)

3.5GeV/c→100MeV/c(~5.3MeV) →100keV→10keV →Kelvin

3digits

2digits 1digit 6digits

AD: 26GeV/c $1.5x10^{13}$ p/pulse $\rightarrow 3.5$ GeV/c $4x10^7$ p/pulse $\rightarrow 0.1$ GeV/c $3x10^7$ p/pulse

Further Deceleration

Traditionally : 5.3MeV \rightarrow 10keV \rightarrow sub eV Foil Trap degrader

Efficiency: ~0.1%

Now : 5.3MeV \rightarrow 10keV \rightarrow 10keV \rightarrow sub eV

Vacuum Trap Isolator

Harmonic potential Spheroidal plasma Rigid rotation

Multi-Ring-Trap and Non-neutral Plasma

Non-neutral plasma

Rigid Rotation of Spheroid

Compression

T-dependent plasma mode

Trapping, Cooling, Trimming, and Extraction

Rotating Wall Compression of p under UHV

Ultra Slow p Extraction

Transported

- 3.5m downstream
- 3 small apertures*
- >30% efficiency
- * Differential pumping of6 orders of magnitude

Slow Extraction of Ultra -Slow p Beam

p accumulation and extraction

AD	3x10 ⁷ p/shot (5MeV)	
RFQD	9x10 ⁶ p/shot(0.12MeV)	30% (30%)
Isolation foil	6x10 ⁶ p/shot(10keV)	70% (20%) 25% (5%)
MRT captured	1.5x10 ⁶ p/shot	
MRT cooled	1.2x10 ⁶ p/shot	80% (4%)
Extracted	0.5x10 ⁶ p/shot	50% (50%)

Ultra-slow p beam in 2004

Stable trapping: More than 1 Million ps per AD shot Extraction #: ~0.5 Million ps per AD shot Extraction energy: 10-500eV Extraction duration: ~10sec Differential pumping of 6 orders of magnitude

Ultra-Slow p Beam from 2006

DC & Pulsed Ultra Slow p Beam

Summary

- 1. Intense ultra slow \overline{p} beam is ready from 2006
- 2. New cross-disciplinary field will start
- 3. The cusp trap could be a potential candidate for the future \overline{H} study

H fraction to be trapped

Assumption : Hs in 1S state, MB-distribution

LEBT+ Multi-Ring Trap

Cooling Feature vs Electron Plasma Radius

Cooled ps locate only where cooling electron plasma exist

Particles vs Antiparticles

	(m _m -m _a)/m	$(q_m + q_a)/q$	(g _m -g _a)/g
e⁻ vs e+	<8x10 ⁻⁹	<4x10 ⁻⁸	(-0.5±2.1)x10 ⁻¹²
p vs p	(-2.5±2.3)x10 ⁻⁸	(-2.5±2.3)x10 ⁻⁸	(-2.6±2.9)x10 ⁻³
n vs n	(9±5)x10 ⁻⁵		

(e⁻ vs e⁺):cyclotron motion + Ps $1^{3}S_{1}$ - $2^{3}S_{1}$ cyclotron motion(p vs \overline{p}):cyclotron motion + $\overline{p}He^{+}(nl,n'l')$ $\overline{p}A$ x-ray

 $n vs \overline{n}$: $\overline{p} + p \rightarrow \overline{n} + n$

Octupole trap + p plug

Secondary Electron Emission with Ultra Slow p Beam

Plugging of (anti)proton

Sympathetically cooled with e⁺

H loss mechanism

Majorana spin-flip

$$\frac{\hbar v}{\mu B} \frac{\partial B / \partial r}{B} \ll 1 \implies x \gg 3 \times 10^{-3} T^{1/4} (cm)$$

e.g., ~10mK Na trapping ~1sec $@ 10^{-8}$ Torr & 0.025T

Spin-flip induced by $e^+ + \overline{H}$ collisions

Octupole trap + p plug

Multi-Ring Trap

Spectrum Analyser

Non-neutral plasma

Rigid Rotation

Compression

T-dependent plasma mode

Hydrogen & Antihydrogen

$f_{1S-2S}(H) = 2 466 061 413 187.2937 \text{ kHz}$

(Phys.Rev.Lett.84(2000)3232)

Proton charge radius : 0.862(12)fm vs 0.877(24)fm

$$v_{HF} = \frac{16}{3} \left(\frac{M_{p}}{M_{p} + m_{e}}\right)^{3} \frac{m_{e}}{M_{p}} \frac{\mu_{p}}{\mu_{N}} \alpha^{2} c \quad Ry$$

$$\begin{split} \nu_{\text{HF}}(\text{H}) &= 1 \; 420 \; 405 \; 751,766 \; 7 \; \pm \; 0,000 \; 9 \; \text{Hz} \\ \mu(\text{ H}) &= (2,792 \; 847 \; 337 \; \pm \; 0,000 \; 000 \; 029) \; \mu_{\text{N}} \\ \mu(\overline{\text{ H}}) &= (-2,800 \; \pm \; 0,008) \; \mu_{\text{N}} \end{split}$$

Production Scheme

Trapping/Cooling of Antiprotons

AD \rightarrow degrader foil \rightarrow Penning Trap : ~0.1%

 $AD \rightarrow RFQD \rightarrow Multi-ring Trap: 4\%$

