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ASACUSA

Atomic Spectroscopy And Collisions Using Slow Antiprotons

Goal

Test CPT (matter-antimatter symmetry) to the highest-possible precision -

How ?
‘Weigh’ the antiproton (proton mass = antiproton mass?)

Use the antiprotonic helium atom as our ‘scale’ - so far -
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Collaborating institutes and funding T
Tokyo MEXT, Japan
RIKEN RIKEN
Danish natural science
Aarhus foundation,
ISA
RMKI OMFB TeT
Debrecen OTKA
CERN

MoU to be signed -
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Part 1

ASACUSA 2000 - 2004




CPT ‘theorem’

= CPT ‘theorem’ -
Physics laws unchanged by the simultaneous exchange of
C(particle«~ antiparticle), P(left—right), T(future—past)

= |f CPT is OK, particle mass = antiparticle mass
= Extensions of the standard model accommodate CPT violation.

= CPT violation, if discovered, has a profound impact on the basic
understanding of nature (but the magnitude must be very small)

= CPT must be experimentally tested to the highest-possible precision

= ASACUSA compares proton mass vs antiproton mass

The best baryonic CPT test
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Weighing the antiproton

proton electron

= proton-electron mass ratio is known to
high precision

10

m/mg = 1836.15267261 = 0.00000085 (4.6 x 10

o )

antiproton electron _
= ASACUSA measures antiproton-

electron mass ratio, (and then compares
it with the proton-electron ratio) but
how?
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NS —

Famous Balmer lines of hydrogen

The photon frequency is

= 23

Hydrogen spectrum and electron mass gg

where R is the Rydberg constant.
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Antiprotonic helium

For antiprotonic helium (p + e~ 4 «),

1 Hg =
n/2

Ze2ff: helium charge, shielded by
electron (calculated by theory)

antiproton electron

=Rc is known to an astounding precision of
6.6x10712,

=By measuring v, antiproton mass can
be determined.
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(to be more precise)

For antiprotonic helium (p + e~ 4 «),

2 9 v
5 [ 1 1 He*
v(n,¢;n',¢") = Re Zzﬁ% ( — ) -

o, e2 n2 n'2
/ ZZ:(n,b;n/ 0') :  state-dependent he-

lium charge, shielded by electron (cal-

_ culated by 3-body QED)
antiproton electron

=By measuring v, and by combining it
with @5/Mp measured by the TRAP
group (at LEAR), antiproton mass and
charge can be determined (PDQG)
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Q/M by TRAP @ LEAR

TRAP III (Phys.Rev.Lett. 82 (1999) 3198)
Qp/Mp
Qp/M,

Note: A polarization force shifts the H™ ion’s cyclotron frequency
(Nature 430, 58 (2004)); a corrected value is 1.6(9) x 1071V

+1=10.9(9) x 107 1°
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Best baryonic CPT limit

= Antiproton ‘weighed’ to 10 precision using the antiprotonic
helium laser spectroscopy - the best (baryonic) CPT limit.

From The Review of Particle Physics (2004)
Imp:mﬁl/ mp

A test of CPT invariance. Note that the comparison of the p and p charge-
to-mass ratio, given in the next data block, is much better determined.

VALUE CL% DOCUMENT ID TECN COMMENT Hg ~>P
<1.0x 108 90 1 HORI 03 SPEC pe— %He and pe— 3He |

e o ¢ \We do not use the following data for averages, fits, limits, etc. ® o o

<6 x108 90 L HoRI 01 SPEC 7PpPe™ He atom Antiprotonic helium
<5 x10~7 2 TORII 99 SPEC Pe He atom
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antiprotonic helium vs antinydrogen

= 23

antiprotonic helium atom

Antihydrogen

System 3-body 2-body

Theory Difficult, accuracy ~ppb? not needed if H and HBar are compared
Production Easy, can be abundantly produced demonstrz;t;aodljnb du;Pa(:tGS;/()egany in the
Cold? Yes, <10 K 292

Ultimate precision 10710~ 12 10-14~18

Outlook

Will continue to provide the best baryonic
CPT test for some more time

Future hopeful
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Energy (a.u.)

4. Nuclear absorption
& annihilation

Analog Voltage / V/

(of antiproton)

L : orbital quantum number

—

A e & .
— He*
-2.0 : _ : N
Antiprotonic Antiprotonic
e _®p | Helium lon (2-body) T Helium Atom (3-body)
H ++ -
° 1.Laser Transition L ==
i T MME§§§§§ yield ~3%
L 2.Auger decay MW ; —=— % A lifetime ~3ps
— — — 39
- 3.Stark Collisions ___ 7 S = 38
_%
-3.0~ / 35
"~ — n : principal quantum number T

(of antiproton)

— Metastable states (t ~ 1 us)
¥~ Short-lived states (t < 10 ns)
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Weighing the antiproton, progress

Fist success at LEAR
10° | LEAR final result
AD construction :
1
C
9 107 [ ! I @ AD ] b
& .
'8 First ASACUSA result at AD /’\ First result 60 pp
i .
O ol | using 5 MeV beam
5 (ASACUSA phase 1)
[0}
oC
107 |
10-10 |
1992 1994 1996 1998 2000 2002 2004 2006
Year
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NOTE
Every x10 improvement
requires new developments

from LEAR (500 ppb)
to ASACUSA phase 1 (60 ppb)




LEAR offered slow extraction
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800 |
600 |
200
0 . ] L. ] hines
1000 2000 3000 4000
Time (ns)
F T T T T3
4r 7
| ]
s °F R
E [ 470.724(2)nm ]
g 2[0.0083(8) nm—, -
o - 4
e L 4
N ]
s 1 ]
0 3 -
[ L
l o A Y . |
470.7 470.72 470.74 470.76
Vacuum Wavelength [nm]

&=
o

LEAR - slow extraction, event by

event counting

= good event identification

If

1 atom, 1 laser shot, ~ 300 Hz

rapid frequency scan so as to
minimize (average out) systematic
errors
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AD - fast extraction

Measured in a
single AD shot

= AD - fast extraction, 3x107 pbar, 10°

atoms, 1 laser pulse

Analog Voltage / V
[TTTTTTTTrTTTT T

= Each laser-frequency point <& 1 AD
e —— . shot

= Good control of systematics over ~8
sos[ " many many AD shots hours is crucial

0.01-

= target condition

0.005]-

laser shot-to-shot power stability, frequency
stability

Area of the laser peak (arb. unit)

0005 |, il el e L LT
597.25 597.254  597.258 597.262

= antiproton beam intensity, position

Laser wavelength (nm)
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Phase 1 (5 MeV beam)

j Cryogenic helium target

Cerenkov §

Cryogemc hehum target ¥
' counters i
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Pulsed laser system

3 2f(a)
e L
-E- L
Rl LEAR
6 L
-5 0 5
Wavelength offset (pm)

e
g |
3 L
2| AD
w

0

Wavelength offset (pm)

hyperfine structure can be resolved (more later)
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Peak intensity (au)

Collisional frequency shift correction

1t A=597.3 nm

[ 2=726.1 nm
i ° ' %

- O

o

-k

o
Offset (GHz)
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-
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(35,33)=(34,32)

(33,32)=(32,31)

o 1

2 3x1021

Atomic density (cm '3)

&=
o

— Antiprotons stopped in

dense (~1bar, 0.5K)
target, zero-density
extrapolation needed

!

60 ppb
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from ASACUSA phase 1 (60 ppb)

to ASACUSA phase 2 (10 ppb)




RFQD is essential

Fist success at LEAR
10° | LEAR final result
AD construction I
1
c
S 107} '
D
8 First ASACUSA result at AD
o
o ) .
= 107} ASACUSA Phase 2 (RFQD) Phase 2 with RFQD 1() ppb
©
[
o
107 |
107 |
1992 1994 1996 1998 2000 2002 2004 2006
Year
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RFQD - an inverse linear accelerator

o

= RFQD (radio-frequency
quadrupole decelerator) is
an ‘inverse accelerator’

= Antiprotons can be
decelerated from 5 MeV 50

keV
RFQD
= With the 50 keV beam, (3.4m)
antiprotonic helium can be

produced in a ‘near-vacuum’

condition

5 MeV
antiprotons

w1
Il.l
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Beam energy & target density

Method Beam Energy | Typical target density Physics output
pHe - 60 ppb
Phase 1| AD direct 5 MeV 1087em™3 pHe HFS
interaction with H,/Do,
Phase 2 RFQD <100 keV 1016_1018cm'3 pHe - 10 ppb

dE/dx to <10 keV
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RFQD eliminates collisional effects T
Phase 1 Phase 2 Notes
Natural width 0.1 - 100000 MHz —
Collisional Shift ~ z <1 MHz Shift is state
dependent, difficult

Collision width ~ z ~1 MHz systematics
Doppler width ~500 MHz — Peak center can be

, determined to
Laser band Wld_th 800 ~2000 MHz — ~1/100 of the width
(beaware of chirp)
Calibration 10 - 60 MHz —
Achieved precision 60 ppb 10 ppb

for a typical transition, 5 MHz < 10 ppb
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13 transitions were measured

38
37

36

34 | p 3He+

metastable states

7 "
287.4 ~~~~— short-lived states

vwn=3]

=30 31 32 33 34 35
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and the results were compared with

3-body QED theoretical calculations




Theory - non-relativistic H

antiproton
electron
H=T+V
1 v2 1 v2 1 V..V 2 2 1
_ —_— e — — . — — — —
2y R 2uy " My, T R ¢ [R-x|”

—1__ as—1 —1 —1__ as—1 —1
py =My tMy , p, =My, +m,
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Complex coordinate rotation method
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-3.4x10°
29=0.06

— ‘He’p (38,33)
-
(qv] —=—a =0.99
T W e
. ——a =1.01
-
©
C “ \
8) - =0.24

3.8x10° - =0.24
E 3.8x10 N=2500 / ¢
— (950,720,700,130) ©=0.08

-2.8473246 -2.84I73244 -2‘84|73242 -2.84I73240
Real part

&=
o

not true bound
states

= careful treatment of
Auger decay is
needed

= complex eigen
values calculated by
using the “complex
coordinate rotation”
method
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add relativistic correction (~100 ppm)

4
a2 = P AT () + Z5(r
Erc_a 8m3 W[ He (rHe) p (rp)]
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add self energy (~15 ppm)

H=T+V

1
2 2
- VY2 V2 ___ S
2,U,IVR ZMV MHVRV R r |R-1|’

—1_ a1 ~1
My —Mﬂe+MX s Mo _MHe+me >

2< p4 4ar >
E,. .=« ——-l-—[ZH O(rye) +Z;0(ry) ]
8m m

4’| 1 ky 5 3]
Ese_3mg ll’la2 _lnR_oo+ 8 — g <ZHe5(rHe)+Z§5(r];)>
+4a43 1 112-225 +Z28(r:
3ot T 135~ 7102 | (Ze(rne) +2,6(r;))
4o |3 5
o —2 <Z hl ZHea) 5(rHe)
3m> 4

3900207 \N—2 Sy
—I—Zl;ln (Zpa) 5(rp)>,
Ryugo S. Hayano
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Breakdown of various contributions ]

(37,34) — (38,33) example (Korobov)

En, = 420 158 166(20)
Er = —43753(30)
Erc—QED — 36()
Ese = 5929(5)
Eyp = —189 ~ 2 ppb - 100
Eyin = —4 ppb, depending
E — —65 c_)n t.he Auger
el lifetime
Efsc — 4 (/
Eiotal = 420 120 448(40) MHz
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Theory vs Experiment

5 *He* 5 3He*
- . | (40,35)—(39,34) .
| £ ‘ | (39,35)—(38,34) ' Q—. I (38,34)—(37,33)
|—.— - (37,35)—>(38,34) | , - (36,34)—(37,33)
—I . | (37,34)—(36,33) I Q - | (36,33)—(35,32)
— _.—| (35,33)—(34,32) |—._. | (34,33)—(35,32)
; . g (33,32)—(32,31) L . | (34,32)—(33,31)
, - . (32,31)—(31,30) . ol (32,31)—(31,30)
200 100 0 100 200 200 100 0 100 200
(Vth=Vexp) /V exp (PPD) (Vth = Vexp )/ Vexp (PPD)

Two theory calculations (»and M) compared with experiment @
and M@ differ up to about 100 ppb
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In order to improve, we must

= Reduce the experimental error bar by an order
of magnitude

= One of the two theoretical calculations turn may turn out to
be wrong

= Urge theorists to work harder
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Part 2

ASACUSA FUTURE




Physics Goals

Measurements

Method

Status & Outlook

CPT tests:

high-precision
determination of
antiproton mass,
charge, magnetic
moment and
magnetic structure
using various
spectroscopic
methods

3-body system

Antiprotonic
helium atom laser
& microwave
spectroscopy

RFQD-+low-density target

New high-precision
laser system.

Two-photon
spectroscopy will
enable ultimate
accuracy.

Proton mass is
known to 0.46

ppb.

The goal is to

measure
Antiprotonic antiproton mass
helium ion laser RFQD-+low-density target |15 rom eoretiea to a similar
guities. precision.
spectroscopy
RFQD + Paul trap + Two- | Superconducting Paul | The magnetic
tone Paul trap R e ey | PrOPETtIES Of
. irst :
2-body (point source of cold | production testin | 2ntiProton poorly
systems antihydrogen) 2006. known.
Antihydrogen
ground-state HFS The goal is to
microwave compare the
spectroscopy RFQD + Penning trap + . magnetic
Cusp trap being structure of
cusp trap developed. Proton +
(possible source of electron testtobe | Proton and
polarized antiydrogen done in Japan in antiproton.
2004-2005.
beam)
N Colllspnal RFQD + gas/solid targets Ready to start measurements in
Auxiliary behavior of very 2006.
100 eV beam extracted - .
measurements | low energy Potential “users” of the extracted

antiprotons

from Penning trap

beam




from ASACUSA 2002 (10 ppb)

to 1 ppb




going to sub-ppb

Fist success at LEAR
10° | LEAR final result
AD construction I
1
c
S 107} '
D
8 First ASACUSA result at AD
o
o -8
=2 107 ¢ ASACUSA Phase 2 (RFQD)
©
[
oC
ASACUSA new laser Shutdown
I dimitofpulselasets. - - - o o o o e e o oo - palen GG I A
1071 P (goal for 2004) "\ 1 ppb
1N
proton mass precision (4.6 x 107°) X
10-10 |
1992 1994 1996 1998 2000 2002 2004 2006
Year
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We need a new laser system

Phase 1 Phase 2 New Laser
Natural width 0.1 - 100000 MHz — —
Collisional Shift ~ y4 <1 MHz
‘_
Collision width ~ y4 ~1 MHz
Doppler width ~500 MHz — Split by ~1/100
Laser band width < 20 MHz
. 800~ Hz — .
beaware of chirp (pulse amplified CW)
Calibration 10 - Hz «— i
(frequency comb)
Achieved precision 60 ppb 10 ppb work in progress
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New Laser System

MBR-110 (CW Ti:S)

locked to the freq. comb

Frequency Comb. Ca|lbl’atI0n Frequency |ock/scan unit
with atomic clock precision

Chirp compensation /
measurement essential

(Photodiode + log amp

Infinity + digital oscilloscope)

(Pulsed Nd:YAQG)

Pulse amplification: narrow-
band high-power
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Chirp measurement

Beat intensity

450

400

350

Frequency (MHz)

300

500

Acousto-optic modulator
Shifts CW laser by +400 MHz

Measure “beat note” of
the shifted CW laser and and

pulsed laser
il a
e Y .
S B et U
<
Most of these methods are not new;
e.g., chirp measurement/
compensation was done by
Jungmann et al. for muonium 1s-2s,
> - 1o 20 but doing this at AD for many
Time (ns) different colors is still a challenge
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wavelengths of the resonance lines ]

+ k + + + ]\ pbar-3He lines

J[ J[ Jf \ J{ ‘ 7\ J[ | J[ pbar-4He lines
a0 400 50 60 700

Wavelength (nm)

it is nontrivial to achieve highest accuracy for these many transitions
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Preview of the 2004 result

593-nm (505,222 GHz) resonance in helium3

I | PS205 (1996)
— ASACUSA (2002)
H— ASACUSA (2004)
preliminary
i Korobov (2003)
100 MHz . Kino (2003)
N 0 © ™~ «© S Q N ™ N L0
~— ~— ~— ~— ~— ~— Al Al Al Al Al
Al Al [ Al Al Al Al Al Al Q Al
N N N N N N o\ N N N N
O 0 O [9) [p) [9) [p) O [9] [p) [9)
o o o o o () o o o o o
[o) O O (o) (9] [9) O [9) [o) [9) [o)

Frequency (GHz)
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Meanwhile the proton mass has moved gg
mp/me vs CODATA years

I
1836.15272 —— _—

_ 20 ppb ]
1836.15270 [ ¢ ]
1836.15268 :— 2.1 ppb 0.46 ppb—: l

: + ® =9 28ppb

_] 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 l_' T

1985 1990 1995 2000

note: alpha mass/proton mass known to 0.13 ppb
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— Widmann et al.,
= o LY PRL 89 (2002)
¢t =L
= S_HF
D ———
g N ¢l U =L
£ VhE
© |
5 | ASACUSA 2004
7]
|J preliminary ‘ T J++ — L+1
Vg_HF
$] J7 =L

* electron spin

Frequency (GHz) T antiproton spin

= HFS measurement, 726-nm laser + 13GHz microwave, so far limited by
laser

with the new laser, accuracy improvement possible
= antiproton y known only to 0.3%, ASACUSA 2001 was 1.6%

In 2006 we will measure antiproton p to << 0.1%
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Physics Goals

Measurements

Method

Status & Outlook

CPT tests:

high-precision
determination of
antiproton mass,
charge, magnetic
moment and
magnetic structure
using various
spectroscopic
methods

3-body system

Antiprotonic
helium atom laser
& microwave
spectroscopy

RFQD-+low-density target

New high-precision
laser system.

Two-photon
spectroscopy will
enable ultimate
accuracy.

Antiprotonic
helium ion laser
spectroscopy

RFQD-+low-density target

Free from theoretical
ambiguities.

Proton mass is
known to 0.46

ppb.

The goal is to
measure
antiproton mass
to a similar
precision.

RFQD + Paul trap + Two-
tone Paul trap

Superconducting Paul
traps being
developed first Hbar

The magnetic
properties of
antiproton poorly

2-body (point source of cold production test in
systems antihydrogen) 2006. known.
Antihydrogen
ground-state HFS The goal is to
microwave compare the
spectroscopy RFQD + Penning trap + . magnetic
Cusp trap being structure of
cusp trap developed. Proton +
(possible source of electron testtobe | Proton and
polarized antiydrogen done in Japan in antiproton.
2004-2005.
beam)
N Colllsn_)nal RFQD + gas/solid targets Ready to start measurements in
Auxiliary behavior of very 2006.
100 eV beam extracted - .
measurements | low energy Potential “users” of the extracted

antiprotons

from Penning trap

beam
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difficulties with the 3-body calculations ]

= Reduce the experimental error bar by an order
of magnitude

= One of the two theoretical calculations turn may turn out to
be wrong

= Urge theorists to work harder

= Try 2-body system(s)
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at very low density, Stark rate is reduced 6]

The first observation

of cold, long-lived

antiprotonic helium
lons

=
=
©
N
©
c
lg
{p

1.4 1.3
Elapsed time (us)

e Change of the decay slope of the laser “spike” is due to the prolongation
of antiprotonic helium ION lifetime (Stark rate is reduced)
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Laser spectroscopy of antiprotonic helium ions | gg

= Antiprotonic helium ion:

= Almost pure classical Bohr atom. No relativistic correction, no
QED, no strong interaction, no hyperfine; practically no
theoretical error

= Already cold (guaranteed to be thermalized to <10 K - parent
is a thermalized 3-body atom)

= In a well-defined circular orbit (n, I) = (N, N-1)

= Lifetime long enough for laser spectroscopy

plan was to try this already in 2004
but had to be deferred due to PS-AD failures
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Physics Goals

Measurements

Method

Status & Outlook

CPT tests:

high-precision
determination of
antiproton mass,
charge, magnetic
moment and
magnetic structure
using various
spectroscopic
methods

3-body system

Antiprotonic
helium atom laser
& microwave
spectroscopy

RFQD-+low-density target

New high-precision
laser system.

Two-photon
spectroscopy will
enable ultimate
accuracy.

Antiprotonic
helium ion laser
spectroscopy

RFQD-+low-density target

Free from theoretical
ambiguities.

Proton mass is
known to 0.46

ppb.

The goal is to
measure
antiproton mass
to a similar
precision.

RFQD + Paul trap + Two-
tone Paul trap

Superconducting Paul
traps being
developed first Hbar

The magnetic
properties of
antiproton poorly

measurements | low energy

antiprotons

100 eV beam extracted
from Penning trap

2-body (point source of cold production test in
systems antihydrogen) 2006. known.
Antihydrogen
ground-state HFS The goal is to
microwave compare the
spectrosco i magnetic
P Py RFQD + Penning trap + |, 10 peing strugcture o
cusp trap developed. Proton +
(possible source of electron testtobe | Proton and
i i done in Japan in antiproton.
polarized antiydrogen 004-2005.
beam)
Collisional . Ready to start measurements in
Auxiliary behavior of very RFQD + gas/solid targets 2006.

Potential “users” of the extracted

beam




Why yet another antihydrogen experiment?

&=
o

GSHFS

1s-2s

method

beam + microwave

atom trapping + 2-
photon transition

sensitivity to CPTV

can directly probe

AN

in free H, no CPTV
sensitivity

(iVMDM

DN

L

a,y* — b,ysy"

—|3H, o™ + ic,y*D” + id®,ysy* D)y =

S THE UNIVERSITY OF TOKYO
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Breit-Rabi diagram

energy

=

= hydrogen
\ B field

antihydrogen
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GS-HFS
* Proton magnetic moment
Hp
- e
- Proton magnetic radius Ry,

Theory
* Rp and Rm
ol V()
VHF = 3 (M+m) M, i Y
Av(Zemach) —'VF2ZQWL %%Z[GE(iziw( )__1}

tﬂ THE UNIVERSITY OF TOKYO

Vog-2pP

HFS

AcpT
AcpPT

06 1413

AcPT

AcPT

10

(1)
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History of Hydrogen HFS

1936 Simple atomic beams ~5 %
i discovery of
1947 Atomlc beams plus . 10—6 :
microwave resonance of e
-8
1960-70 Hydrogen maser 6x 10~ 13 | not possible for antimatter
Molecular Beam Resonance Setup, I.I. Rabi et al., Phys. Rev. 55, 526 (1923)
| [ ] |
H Microwaves

- k3 N.B. HFS spectroscopy of trapped
antihydrogen does not necessarily
lead to high precision due to the
: inhomogeneous magnetic field
[ Amagnet [lcll  Bmagnet inside the trap

constant

. field gradient
magnetic

field gradient

field
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focus - resonate - analyze

Maxwell distributions

S 0.0040:
% oot T
0.0030 - T=15K v, =480 m/s
oot - e
oors - Assumed: |5 K source, 1.2T on the pole
0.00102— _4
oooos £ Acceptance is 10
0.0000 =
TR ey e Resonance curve width ~ 2 kHz, 2 ppm
: : -8
(F,m)=(1,1) without spin flip split the line by 1/100 = 10

(F,m)=(1,1) with spin flip

| (F,m)=(0,0) shielding cavity shielding
0.2 —

i antihydrogen
detector
E o -
>
-0.2

0 0.5 1 1.5 2 2.5 3 3.5 4
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How to make a point source

&=
o

= atomic-beam geometry works best if the source is point
like

= antihydrogen source size prodcued in nested Penning

trap ~ 1cm3

- too large
= |imited access (optical & extraction)

= why not some other methods?
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RF (Paul) Trap

= High-frequency RF (Paul) trap

= Paul traps used for high-precision atom
studies, but not usually to store a large
number of particles

= Try to catch, cool, and store a large
number of protons, electrons,
antiprotons, positrons in Paul traps

= Needs high frequency, high field, use
superconducting technology

Potential in the lon Trap
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Linear Paul trap, Q-mass,

e E €nd view
2rg

= +Ug U« V cos wt

t 1.1 1 J
loa source Rod system Collector
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why not apply the RFQD technology to antimatter trapping?
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Particle cooling in the trap is the key e |

= RFQD has no beam cooling
= No magnetic field = synchrotron cooling is not effective

= We use resistive cooling (dump energy in an external
register)

= This requires careful optimization of the cavity L & C
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Cooling considerations

= Resistive cooling damps the center-of-motion of the particle cloud.
* Effectively damps the secular and micro-motions simultaneously.
*Diminishes the particle excursion = size of the cloud.

= Speed of cooling is independent of particle number.
Inversely proportional to C and d.
Inversely proportional to the square root of the Pseudopotential.
8vV2mrgw(l + 5)?Caec 16v2meOro(1 + 5)?Clec
g1 —5)*Q a ¢*(1—s)*Q '
= Resistive cooling stops when space-charge effects become dominant
(the bottom of the harmonic potential becomes flat) and the particles do
not move with a definite “secular frequency” any more.
* They begin to move chaotically, like the particles in a gas.
* The edges of this gas cloud is heated by the radiofrequency.
* Particles near the cloud center are Debye-screened from RF.
* The heating strength depends on the distance from the trap center.
* The size of the cloud = surface temperature depends on N.

T 1 [(9meN?(2w? + w?) 3 \ kgT
~ kp 12872 m(2w? + w?)

Teool — G
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Paul trap R&D in progress

CH1 B/R log MAG 10 dB/ REF O dB 1: 7.0078 dB

b). ! [ ! ! ! ; ? 36.985 MHz
Resistive RF-drive |
cooling freq. | L_ssorres
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Superconducting Linear Paul Trap e

. Return helium
Lk
{ Al L

LHC heat exchanger

=l i = Ti superfluid helium bath
| Superfluid cooling
AF stems
Entrance foil K-t
= ¥ ,.‘ Einzel lens
B :-:‘ | e i
1 i
e
L i - ’ MCP

g Bypass valve

Static electrod
atic electrods Paul trap electrodes
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H Il 111 T
u | l U | -
1 | | T T Liquid helium cooling pipe

= Engineering Drawing being
completed

= This model will be tested using
protons

= Cooling to superfluid 1.6 K to avoid
microphonics (no bubbles).

= Inductive RF feedthrough (3cm diam,
center cooled).

=Two pickups to observe quadrupole
and dipole resonances.

= 0.7 micron-thick biaxially-oriented
monomar entrance window.
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Some specifications

tﬂ THE UNIVERSITY OF TOKYO

Radius:
Length:
RF drive:
Fluctuations:
Maximum voltage:
Electrode capacitance:

Pseudopotential:
g-value:
Secular frequency:
(Anti)protons trapped:

(Anti)proton density:
Cloud diameter:

RF heating at surface:

Q-value of cooling:

Cooling time constant:

Dipole cooling capacitance:
End ring electrodes voltage:

3cm
15cm
30 MHz
+/- 10 kHz
60 kV
15 pF
300 pF
6 kV
4.5 kV
0.85
11.4 MHz
1 million per shot?
4 million / mm°
40 micron
200 K

10°

10 seconds
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Detailed RF simulations done

&=
o
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Cooling (cryogenic) calculations

- 2
o

= Cool by flowing superfluid helium
through stems.

= Simulation shows 0.5-1 W heat
dissipation per stem.

Copper model (version 3)
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Copper model version 5

Larger L (inductance)
required for efficient
resistive cooling - now
use coils (but must
reduce microphonics)
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Relative Precision

10° |

107 |

10° |

10-10 |

Fist success at LEAR

LEAR final result

ASACUSA new laser

limit of pulse lasers
(goal for 2004) .

proton mass precision (4.6 x 107°)

natural line width

1992

1994

1996 1998 2000 2002 2004 2006

Year




to reach << ppb

= Eliminate Doppler width (~500 MHz) using two-photon
transitions

= Eventually, the use of pulsed laser has to be abandoned
(chirp < 1TMHz is difficult)
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the present target - HUGE

pulsed laser is unavoidable now

—
Antiproton beam Laser beam
from RFQD 5 mJ, 5ns pulse typical
90 keV expanded to d=50-100 mm

spread 10 keV, (i.e., 50-100 kW/cm?)

100 ® mme*mrad

b

Outer quartz window
d=120mm, t=5mm

1.5um Mylar window
Inner quartz window
d=100 mm, t=15mm

Helium gas target,
10 K, 1 Torr, typical
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antiprotonic helium in a Paul trap

= with antiprotons compressed in the Paul trap (filled with
dilute helium gas), antiprotonic helium atoms can be
produced in a tiny volume

= then, CW-laser 2-photon spectroscopy will become
possible

= natural line width ~ 160 kHz ~ 0.16 ppb, split the line by

1/100 =107 12 will be possible
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back to antihydrogen

how to make antihydrogen in a Paul trap?




Innovative two-tone trap

Antihydrogen production trap

/Ring electrode

s

End cap electrode
(antiproton/positron
injection).

DC biased separately
from ring electrode

Pick-up feed

Il

two-frequency trap (3GHz to confine positrons, 2MHz for
antiprotons)

RF characterization done, mechanical & cryogenic implications
studied
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Two tone trap + laser

N
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J
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e™ in the two-tone trap

Positron g-value: 0.15
Positron oscillatory a-value: - 173107
Positron pseudopotential: 2100-2200V
Positron secular motions:  78+/-0.4, 156+/-0.5 MHz
Number of positrons trapped: 10000
Positron density: 5x|08 / cm3
Positron cloud diameter: 300 micron
Temperature at cloud surface: 50 K

RF=3 GHz, 80 kV

RF=1 MHz, 40V

77N
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Pbar in the 2-tone trap

Antiproton g-values: 0.37, 8x|0'5
Antiproton pseudopotential: 3V, 1.2V
Number of antiprotons trapped: 10000
Antiproton density: 7x|05 / cm3
Antiproton cloud diameter: 3 mm
Temperature at cloud surface: 50 K

RF=3 GHz, 80 kV

NI

RF=1 MHz, 40V

3’ THE UNIVERSITY OF TOKYO Ryugo S. Hayano




= 23

Antihydrogen production in the two-tone trap 69

1): Antiproton injection 2): Antiproton trapping
by 7 MHz RF field

250

/

200
50 K cut-off /
150
100 K cut-off /
100
200 K cut-off /

RF ionization cut-off

. S 4): Positron trapping
3): Positron injection by 3 GHz RF field

ul
o

0 5 10 15 2(

Time until all atoms in 1s or 2s state (microsec)

Principal quantum number n

5): Antihydrogen production
and extraction

Only ground-state (or 2s) antihydrogen
are emitted
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A possible setup

Linear antiproton Paul trap

2 ::E"

Two-tone antihydrogen
production Paul trap

IS ﬁii il

Beam profile monitor (exist)

Radiofrequency quadrupole decelerator (exist)

i ﬁii

- -

slNENNERE NN NN NEN

IR ARANNRNNNE

Mijsanah

]:
Lo /
Ij:_‘

lifetime ~ 1s

]
I I lifetime > 1000 s

i

pumping pump ‘

restriction

Electromagnetic calorimeter

Beam profile monitor (exist)

and conductance limiter,
differnetial pumping.
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Cryogenic Paul Trap Two-tone trap Prepare lasers,

test (with protons) development positron source detectors
pbHe <1ppb E- 2006
h Catch & cool
tWOp'EHZ[on antiprotons
spectroscopy
Make
antihydrogen
pbHe HFS make pbHe
in the trap
characterize
10 (velocity, etc.) \ Sextupole,
107 cavity
end of pbHe with
pulsed laser pbHe
spectroscopy
~ CW laser
2~3 years GSHFS
2~4 years measurement
4~5 years
laser
cooling!?
10712 1078




Physics Goals

Measurements

Method

Status & Outlook

CPT tests:

high-precision
determination of
antiproton mass,
charge, magnetic
moment and
magnetic structure
using various
spectroscopic
methods

3-body system

Antiprotonic
helium atom laser
& microwave
spectroscopy

RFQD-+low-density target

New high-precision
laser system.

Two-photon
spectroscopy will
enable ultimate
accuracy.

Proton mass is
known to 0.46

ppb.

The goal is to

measure
Antiprotonic antiproton mass
helium ion laser RFQD-+low-density target |15 rom eoretiea to a similar
guities. precision.
spectroscopy
RFQD + Paul trap + Two- | Superconducting Paul | The magnetic
tone Paul trap R e ey | PrOPETtIES Of
) irst :
2-body (point source of cold | production testin | 2ntiProton poorly
systems antihydrogen) 2006. known.
Antihydrogen
ground-state HFS The goal is to
microwave compare the
spectroscopy RFQD + Penning trap + . magnetic
Cusp trap being structure of
cusp trap developed. Proton +
(possible source of electron testtobe | Proton and
polarized antiydrogen done in Japan in antiproton.
2004-2005.
beam)
N Colllsn_)nal RFQD + gas/solid targets Ready to start measurements in
Auxiliary behavior of very 2006.
100 eV beam extracted - .
measurements | low energy Potential “users” of the extracted

antiprotons

from Penning trap

beam
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Antiproton dE/dx measured to ~ keV T

From RFQD — S

beam

Detector # 1 1m

ESA #2 O
Detector #2

Electrostatic
Analyzer (ESA)
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Antiproton dE/dx measured to ~ keV T

1 8 ! LA L L L L | ! LA L L L EL | ! ! L
16 B antiprotons, 2002
i O protons 2002 i
14 i
1 Solid - “recommended”’ proton curve
<
> 10 -
2D,
x 8 -
9
v O '
4 Dashed - theories \ .
) binary encounter,
0 electron gas
1 10 100 1000
Energy [keV]

= Velocity proportionality at low energy (expected from electron gas
model) evident in metal foils
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= Recently succeeded to
extract a large number .. [ {

of antiprotons from the i | s N

trap e o

= details by Y. Yamazaki
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lonization, antiprotonic atom formation

Single lonization of He by Antiproton Impact

= 23

pA Formation (FMD)
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In the ASACUSA original proposal, but were deferred,
waiting for the phase-3 beam development
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“phase 3 beam”

= some experiments planned for FLAIR (slow
extraction) may already be explored at AD
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Summary




Physics Goals

Measurements

Method

Status & Outlook

CPT tests:

high-precision
determination of
antiproton mass,
charge, magnetic
moment and
magnetic structure
using various
spectroscopic
methods

3-body system

Antiprotonic
helium atom laser
& microwave
spectroscopy

RFQD-+low-density target

New high-precision
laser system.

Two-photon
spectroscopy will
enable ultimate
accuracy.

Proton mass is
known to 0.46

ppb.

The goal is to
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2004-2005.
beam)
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Auxiliary behavior of very 2006.
100 eV beam extracted - .
measurements | low energy Potential “users” of the extracted

antiprotons

from Penning trap

beam
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ASACUSA has a comprehensive program
promising future




