HIF report contribution to the SPSC meeting Villars -2004

Hadronic Physics working group

Our (simple) general vision

- We believe we are facing an era where our understanding of particle physics is *likely* to be subject to **big changes** (and confusion?!).
- We do not know exactly where Nature will take us.
 We have to be equipped with theory and experiments to address whatever scenario may appear.
 - recent examples from beauty factories
 - large direct CPV
 - unexpected states in charm spectroscopy
- Strategy: diverse and flexible system to cover the entire field of particle physics, mantaining an excellent world-wide level of competitivity.

QCD and strong interactions

• Strong interaction studies will play a crucial role: QCD is ubiquitous in high-energy physics!

Once new particles are discovered at LHC, it will be mandatory to explore parameters, mixing patterns, i.e., we need an **unprecedented ability** to interpret the **strong interaction** structure of **final states**

Synergy: kaon system, heavy flavour, spectroscopy, pdf...

- Many intellectual puzzles still open in QCD
 - Confinement, chiral symmetry breaking, vacuum structure,
 hadron masses, origin of spin etc.

QCD and strong interactions ...cont'd.

• Parton distribution functions (nucleon structure): a grand project of QDC over the last decades!

Complex enterprise involving theoretical and experimental challenges

Validation of QCD input parameters (PDF's, α_s) in view of the early stage of LHC

• LHC itself will then provide a new frontier for QCD

The boundary between QCD for its own sake, and QCD as a servant for new physics is thin...QCD is anyway challenging!!

In this philosophy....

.....a few considerations about possible measurements

Some (selected) topics in

Light and heavy hadron spectroscopy

- work in progress
- Studies of nucleon structure (DIS, Drell-Yan)
- SM measurements with Heavy Flavours

Thanks to the chairpersons of the session hosting this talk, which will be "transverse" to various sessions

Within the framework of

- A Super-PS (a few 10^{14} p/s)
- A Super-SPS @ 1 TeV (10¹⁴ p/pulse every 10 s)
 (approx. 100 x Tevatron)

W.Scandale
La Biodola HIF2004

• In the time schedule of

 2012-2015 ...in the absence of a crystal ball we can only use imagination and daring

Open possibilities @ high intensity facilities for hadronic physics

Possibilities to provide many different beams and to address many different physics topics, advantages:

- > FLEXIBILITY
- > MODULARITY
- Antiproton beams ("low" energy, high intensity, good $\Delta p/p$)
- -Hadron and photon beams (high energy high intensity)
 - ➤ hadroproduction with fixed target
 - photoproduction with fixed target

Light-State spectroscopy
Charmonium
Bottomium
Exotics (in a wide mass range)
Mixing & Rare decays
Heavy-Flavour Spectroscopy

- Lepton beams

 ΔG , h₁,GPD's

Study of QCD states

Search for foreseen states, look for exotics (not yet established!!):

→ Light states

→ Heavy states

Many different experimental approaches.

Coupled-channel analysis

An example from ppbar annihilation at rest \rightarrow Search for exotics

The real issue here is analysis

For the quantum numbers and the decay width determination, coupled channel and spin-parity analyses are mandatory!

Many states, different efficiencies etc...

→ But also statistics is an issue!

Structure evolution vs. statistics

The Renaissance of Hadron Spectroscopy

A number of new narrow states just in the last two years!

η'_c . Belle, CLEO, BaBar

Narrow D_{sI} :BaBar, CLEO, Belle

X(3872) :Belle, CDF, D0, BaBar

 $\Theta^+(1540)$ a confused experimental scenario

Evidence not confirmed

 Ξ_{cc}^+ Selex

D⁺_{SJ}(2632) Selex

Charmonium

- Charmonium states are being seen in
 - e+e- annihilation
 - B decay
 - two-photon collisions,
 - hadronic production
 - pp annihilation

It is access to a very broad variety of quantum number J^{PC}, many cross-checks, robust evidence and systematics controls of measurements that make the field lively and interesting!

The X(3872)

New state discovered by Belle in $B^{\pm} \rightarrow K^{\pm} (J/\psi \pi^{+} \pi^{-}), J/\psi \rightarrow \mu^{+} \mu^{-} \text{ or } e^{+}e^{-}$

X(3872) seen also by CDF/D0/BaBar

Many theoretical papers exist: a conventional charmonium state, a DD* molecule, an exotic state? Experimental measurements (quantum numbers) are crucial.

Charmonium ...cont'd.

- **Above the D-D** threshold at 3.73 GeV; the energy region is very poorly known. Yet this region is rich in new physics.
 - This is the region where the first radial excitations of the singlet and triplet P states are expected to exist.
 - It is in this region that the narrow D-states occur.
- Below the D-D threshold: the less established $h_c(^1P_1)$
 - Precise measurements of the parameters of the $h_c(^1P_1)$ give extremely important information on the **spin-dependent** component of the \overline{qq} confining potential.
 - The detection and measurement of this resonance require high statistics and excellent beam resolution.
 - Central part of experimental program of PANDA at GSI

(hundreds of thousands of J/ψ produced per day!)

Heavy Flavours and Physics beyond the Standard Model

- Beauty is (will be) widely uncovered with dedicated facilities.
- Only more recently charm has attracted interest as a clue for New Physics
 - this is due to the excellent statistics and quality of the data!
 - investigation of rare or unexpected phenomena
 - fixed target experiments have been competitive
 - \rightarrow Mixing
 - → Forbidden and rare decays

Mixing review

Hot topic of the moment!

New limits expected from B-factories (ICHEP04)

CLEO-c

$$r_D = (x^2 + y^2)/2 < 10^{-4}$$

@ 95% C.L

It will be interesting to see if mixing does occur at the percent level.

BTeV:
$$r_D \square 10^{-5}$$

Mixing review ...cont'd.

D^0 - \overline{D}^0 lifetime difference

All experiments are engaging themselves in this measurement! We shall see how it evolves!

0

2

2002

y%

Forbidden and rare decays

- •lepton number violating decays
- •investigation of long-range effects and SM extension

Statistics is conditio sine qua non!

$$D^+, D_s^+ \to h^{\pm} \mu^{\mp} \mu^+$$
$$(h = \pi, K)$$

FOCUS improved results by a factor of 1.7 –14: approaching theoretical predictions for some of the modes but still far for the majority

CDF Br(D⁰
$$\rightarrow \mu^{+}\mu^{-}$$
)<2.4 ×10⁻⁶ @ 90% C.L. (65 pb⁻¹ data)

CLEO-c sensitivity 10⁻⁶

Parton Distribution Functions

- F_2 vs. $Q^2 \rightarrow$
- Data span
 4 decades of
 Q² measurement
- •SM gives excellent description

A powerful, diverse exploration!

HERA ep, Fixed-target DIS ep, ed, vN; Drell-Yan, W asym, Tevatron jets typical F_2 accuracy: 2-3% could reach 1% in 2007 (by adding ~600 pb⁻¹)

Some questions

- High Q^2 puzzle: is the F_2 rise challenging the Froissart limit?
- Low Q² puzzle: why g (and even F_L) come out negative in the fits?
- Is there a really sharp transition in the F_2 behaviour around $Q^2 = 0.5 \text{ GeV}^2$?
- •

What will happen after 2007?

- Will this field come to its end?
- If not with HERA will it continue with another e-p collider?
- Will it be resumed in the far future?
- Accurate Parton Distribution Functions are anyhow needed: can LHC do all by itself??

Propagation of PDF uncertainty on heavy-flavour production cross-sections

_	Estimate of 2-sigma (?) uncertainties									
	PDFs	Tevatron	LHC							
	Scales	levalion	LHC							
	Bottom	±10-15%	±15-20%							
	DOLIOIII	±35%	±40%							
	Top	±5-10%	±3-6%							
	Тор	±5%	±12%							

hep-ph/0303085, hep-ph/0312194 Frixione, Mangano, Nason, Ridolfi

and on di-jet cross-sections

Parton Distribution Functions...cont'd.

- •polarised PDFs are fundamental but data are fewer and less precise.
- •the singlet axial charge suppression is confirmed; Δu , Δd measurement at 10%, Δs , $\Delta \overline{q}$, ΔG unconstrained, $\Delta_T q$ unknown.
- great progress from SIDIS experiments (HERMES, COMPASS, JLAB) + RHIC.
- •COMPASS remaining the only high-energy DIS experiment after 2007.

Hera achivement

electro-weak unification:

lepton beam: e^+ , e^- , e^+_R , e^+_L int. L (pb-1)/exp.: 100 15 30 30

RHIC – the first polarised pp collider

eRHIC

· First polarized DIS experiments in collider mode: center

of mass energy 100 GeV

10 GeV pol. e[±] linac + 0.5 Ampere e[±] ring 70 % longitudinal polarization L= 2x10³² -10³³

- Final Design Ready 2010 (CD3)
- 5 years construction

First collisions with limited detector 2015? for $1 < Q^2 < 10^4$ Will also JLab upgrade its beam further and further?

GSI: bulding an International Facility for

Antiproton and Ion Research

HESR (High Energy Storage Ring)

Length 442 m Br = 50 Tm

$$N_{\text{stored}} = 5 \times 10^{10} \text{ anti-protons}$$

High luminosity mode

Luminosity =
$$2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$$

 $\partial \mathbf{p}/\mathbf{p} \sim 10^{-4}$ (stochastic-cooling)

High resolution mode

$$\partial \mathbf{p}/\mathbf{p} \sim \mathbf{10^{-5}}$$
 (electron cooling < 8 GeV/c)
Luminosity = $\mathbf{10^{31} \ cm^{-2}s^{-1}}$

The International Steering
Committee considers spin
physics of extreme interest and
the building of an antiproton
polarized beam as a unique
possibility for the FAIR project.

•Antiproton production similar to CERN,

•Production rate 107/sec at 30 GeV

•Anti-Proton_{beam} = 1.5 - 15 GeV/c

active R&D ongoing

PAX+ASSIA

Cern Super-PS and SPS

• How can "high intensity" at CERN be beneficial for the hadronic program?

If super PS

plus antiprotons

- Light-state spectroscopy
- Charmonium

```
à la PANDA
Production rate 2x10^{7/sec}
P_{beam}=1-15 \text{ GeV/c}
N_{stored}=5x10^{10} \text{ p}
L=2x10^{32} \text{cm}^{-2} \text{s}^{-1}
```

- **Bottomonium** ?

.test models: LQCD, effective theories of strong interactions, potential models in the heavy-quark sector .complements e+e⁻ studies on such a system .can measure more precisely masses and widths of P states unique alternative in η_b searches

> SIS100/200 (GSI)

 10^{13} p/sec (a) 26 GeV/c Super-PS $6x10^{14}$ p/sec @ 30 GeV/c $10^{13} \text{ p/sec } @29 \text{GeV/c}$

bb in pp?

P. Dalpiaz, M. Fabbri and E. Luppi

What do we know?

• Scarse and old literature, rough estimates:

Fine Bottomonium Spectroscopy in ppbar Annihilation, Proceedings of the Workshop on Nucleon-Antinucleon Interactions, (Moscow, ITEP, 8-11 July 1991) pag. 1486 $\frac{Br(b\overline{b} \to p\overline{p})}{Br(c\overline{c} \to p\overline{p})} \square \left(\frac{m_c}{m_b}\right)^{8} \square 10^{-4}$ $\frac{Br(b\overline{b} \to p\overline{p})}{Br(c\overline{c} \to p\overline{p})} \square \left(\frac{m_c}{m_b}\right)^{10} \square 10^{-5}$ $J^{PC} = 1^{--}, 1^{++}, 2^{++}$ $J^{PC} = 0^{-+}, 0^{++}, 1^{+-}$ $\sigma(p\overline{p} \to \gamma) \square 100 pb$ $\sigma(p\overline{p} \to \chi_b) \square 10 pb$

- Hopefully, new limits will be (soon) set
 - CLEO III $\Upsilon(1,2,3S) \rightarrow ppbar (\approx 10^{-6})$
 - − CLEO-c $\psi(3770)$ →ppbar (≈ 10⁻⁶)

bb in pp?

A word of caution

- Many experimental challenges foreseen:
 - Luminosities about 10^{32} will give ~ 10 Mhz hadronic rates
 - Detection of exclusive EM channels: very fast detectors, excellent e and μ ID.
 - Narrow resonance width require ultracool pbar beams dP/P<10⁻⁴
- Machine requirements: interaction rate is high enough to require debunched beams
 - minicollider: 5+5 GeV ppbar collider with state of the art cooling
 - fixed target: storage of antiprotons with $E_{beam} \sim 45$ to 55 GeV.

Acceleration or deceleration to the resonance energy

If a Super SPS

and secondary beams

Fixed-target program of Fermilab with about 100x statistics

Photoproduction: 100 x FOCUS, i.e. 10⁸ reconstructed charm in a very clean environment

mixing—rare decays (cfr.CLEO-c)

Hadroproduction: 100 x SELEX

Help to confirm or not double-charm et al. (analysis issues)

SELEX:

$$\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+} \qquad \sim 15 \qquad \Rightarrow (1500)$$

$$D_{sJ}^{+}(2632) \to D^{0} K^{+} \qquad \sim 15 \qquad \Rightarrow (1500)$$

$$D_{sJ}^{+}(2632) \to D_{s}^{+} \eta \qquad \sim 45 \qquad \Rightarrow (4500)$$

what about background?!

Heavy Flavours & light mesons

• An interesting interplay:

- On the one hand Heavy Flavour decays represent a new source of info on light hadrons
- On the other Heavy Flavour interpretation require understanding of strong effects in the final states
- A nice example of synergy and joint effort between two communities...promising. Surprises?
- Examples: $D \to \pi\pi\pi$ ($f_0(980)$, σ , etc.) $D \to KK\pi$ (f_0/a_0 mixing ...and CP) $B \to \pi\pi\pi$ ($\rho\pi$ and the CKM α angle) $B \to \phi$ K_s and New physics (f_0/a_0 ..)

Photoproduction of light quarks at fixed target

- Photoproduction and Light Quark Spectroscopy (à la FOCUS):
 - -- ρ , ω , φ production, as expected ... the photon behaves as a vector meson
 - -- but also the 1^{+-} b₁(1235), for instance
 - -- associated production of scalars (f_0 , etc) with ϕ
 - -- mysteries with the higher-mass "vectors": X(1750) & $\rho(1900)$
- Super SPS 10¹³ Hz protons \rightarrow 10⁷ Hz photons on target with energy 150 GeV, \sqrt{s} =17GeV
- → 100 x FOCUS at the very least (DAQ limited)
- Active programme of low-energy photoproduction at Jlab (Expt. at Hall D)

If a Super SPS ...cont'd.

and lepton beams:

1) The gluon helicity distribution

Expected error on $\Delta G/G$

ΔG/G accuracy ~ 0.1 by the end of the decade from COMPASS open charm

RHIC could provide complementary measurement from prompt photon + jet and 2 jet events, with accuracy similar to COMPASS: a lot to learn from the comparison.

 $\Delta G/G$ from open charm is limited by statistics: with SuperSPS in principle $\delta(\Delta G/G) < 0.03$ in 1 year

If a Super SPS ...cont'd.

and lepton beams:

2) Transversity

Great evolution of theoretical landscape in recent years: many properties clarified.

Experimental effort is increasing: exploratory measurements being carried by HERMES, COMPASS and JLab.

Collins and Sivers asymmetries becoming more precise: first indications on h₁ soon.

Tensor charge extremely interesting (Lattice comparison) but only after long and great effort

Asymmetry is small, high intensity is a must: higher luminosity DIS and polarised pbar-p coll.

If a Super SPS ...cont'd.

and lepton beams:

3) Generalized Parton Distributions Novel unified framework for the description of hadron structure

PDF's ← form factors

transv. localisation → partonic orbital angular momentum

Accessible via DVCS and Hard Exclusive Meson Production (HEMP)

Pioneering meas.: ZEUS, H1, CLAS, ...
HERMES will devote last years of data taking

Burkardt, hep-ph/0207047

GPD's

beam charge asymmetry, 100 GeV µ

Model 2 : from Goeke et al. (L. Mossé, M. Vanderhaegen

Deeply VCS

Bethe-Heitler

COMPASS is proposing DVCS beam charge asymmetry: indications on transverse space localisation of partons

With Super SPS: comprehensive HEMP measurement providing model independent extraction of GPDs and parton angular momentum

Dreaming about DIS at the high-energy frontier

Linear extrapolation in time gives for 2012:

√s ~ 1 TeV →

LHC + 36 GeV

lepton beam

(ELFE-like)

Linear extrapolation in time gives for 2016:

√s ~ 2TeV

→ LHC + 140 GeV lepton beam

→ Tevatron or SuperSPS + 1 TeV lepton beam

A step further ... a NuFactory

Fantastic opportunities: proton g_1 and g_5

from v pol. DIS

CERN/ECFA QCD/DIS working group

Forte, Mangano, Ridolfi

Conclusions

- Strong interaction effects have important (crucial) impact on many different measurements and New Physics searches
- Many short/medium term projects already planned
 - GSI-JLab-CLEO-c, BTeV/LHC-b
- Where will we be in 10 years from now?

Go to slide number 2

 A vast program in the field of hadronic physics will be possible with a diverse and flexible system Super PS and SPS

backup

Bottomonium from ppbar

Physics Goals:

- complements e+e- studies on such system.
- can measure more precisely masses and widths of P states
- unique alternative in etab searches

Physics challenges:

- Luminosities about 1.E32 will give ~10 Mhz hadronic rates:
- Detection of exclusive EM channels : very fast detectors, excellent electron + muon ID.
- Narrow resonance width require ultracool pbar beams dP/P<1.E-4
- Peak Cross Sections (detecting EM final states) will be:

Upsilons: ~ 0.1 pb (BRin/1.E-6)/(dP/P/1.E-4)

Chi-B: ~1 pb (BRin/1.E-6)

Eta-B: ~.05 pb (BRin/1.E-6) * (BRout/1.E-3)

- ---> CLEO can measure BRin at 1.E-6 with currently available data 29 M Y(1S), 9 M Y(2S), 6 M Y(3S).
- ---> Dalpiaz et al: bbbar/ccbar $\sim 10-4 \Rightarrow$ BR $\sim 1.e-7$ or below.
- Machine requirements: interaction rate is high enough to require debunched beams

minicollider: 5+5 GeV ppbar collider with state of the art cooling

fixed target: storage of pbars with Ebeam ~ 45 to 55 GeV.

Acceleration or deceleration to the resonance energy

The experimental scenario at glance

$N^{\;2S+1}L_{J}$	J^{PC}	$u\overline{d}$, $u\overline{u}$, $d\overline{d}$ $I=1$	$u\overline{u},d\overline{d},s\overline{s}$ $I=0$	$rac{c\overline{x}}{I}=0$	I=0	$\overline{s}u, \overline{s}d$ $I = 1/2$	$c\overline{u}$, $c\overline{d}$ $I = 1/2$	I = 0	$egin{aligned} ar{b}u, ar{b}d\ I = 1/2 \end{aligned}$	$egin{aligned} ar{b}s\ I=0 \end{aligned}$	$egin{aligned} ar{b} c \ I = 0 \end{aligned}$
1 ¹ S ₀	0-+	π	η,η'	$\eta_c(1S)$	$\eta_b(1S)$	K	D	D_s	В	B_s	B_c
$1{}^3S_1$	1	ρ	ω, ϕ	$J/\psi(1S)$	$\Upsilon(1S)$	$K^*(892)$	$D^*(2010)$	D_s^*	B^*	B_s^*	
$1 ^1P_1$	1+-	$b_1(1235)$	$h_1(1170), h_1(1380)$	$h_c(1P)$		K_{1B}^{\dagger}	$D_1(2420)$	$D_{\rm s1}(2536)$			
$1 {}^3P_0$	0++	$a_0(1450)^*$	$f_0(1370)^*, f_0(1710)^*$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$\pmb{K}_0^*(1430)$		Ds(2.32)			
$1{}^{3}P_{1}$	1++	$a_1(1260)$	$f_1(1285), f_1(1420)$	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	K_{1A}^{\dagger}		Ds(2.46)			
$1 {}^3P_2$	2++	$a_2(1320)$	$f_2(1270),f_2'(1525)$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	$K_2^*(1430)$	$D_2^*(2460)$	Ds(2.57)			
$1~^1\!D_2$	2-+	$\boldsymbol{\pi_2}(1670)$	$\eta_2(1645), \eta_2(1870)$			$K_2(1770)$			Pro	bab	1v
$1~^3D_1$	1	$\rho(1700)$	$\omega(1650)$	$\psi(3770)$		$\pmb{K^*(1680)^\ddagger}$			nari	co W	
$1{}^3D_2$	2					$K_2(1820)$					
$1 ^3D_3$	3	$\rho_3(1690)$	$\omega_3(1670),\phi_3(1850)$			$\pmb{K_3^*(1780)}$					
$1~^3F_4$	4++	$a_4(2040)$	$f_4(2050),f_4(2220)$			$\pmb{K_4^*}(2045)$					
$2 {}^1S_0$	0-+	$\pi(1300)$	$\eta(1295),\eta(1440)$	$\eta_c(2S)$		K(1460)					
$2~^3S_1$	1	$\rho(1450)$	$\omega(1420),\phi(1680)$	$\psi(2S)$	$\Upsilon(2S)$	$K^*(1410)^{\ddagger}$					
2 3P_2	2++	$a_2(1700)$	$f_2(1950), f_2(2010)$		$\chi_{b2}(2P)$	$K_2^*(1980)$					
$3 {}^1S_0$	0-+	$\pi(1800)$	$\eta(1760)$			K(1830)					

Charmonium:dedicated facilities at short/medium term

CLEO-c:

```
30 M ψ(3770) [run 2004]
1.5 M ψ(4140) [run 2005]
~1G J/ψ [run 2006]
```

BES-III (2007-2009?, with CsI Ecal):

```
10 G J/\psi, 3 G \psi(2S) per year 25 M \psi(3770) per year
```

BaBar/Belle (from now up to 2006-7):

```
500 fb<sup>-1</sup> each
```

Panda@GSI (2011?-):

```
up to 3 \text{ fb}^{-1}.
```

Possible evolution of QCD spin physics

- Progress expected from COMPASS + HERMES + RHIC Spin + JLAB will provide accurate Δq ; $\Delta G/G$ at a precision of about 0.1 and first indications for $\Delta_T u$, $\Delta_T d$.
- Medium term (~2014) COMPASS has the possibility to provide first indication for u quark total angular momentum from GPD's, RHIC can measure very precisely Δu , Δd , GSI will contribute on $\Delta_T u$, $\Delta_T d$.
- Long term: very accurate ΔG and (and very accuate α_s from Γ_{Bj}) at Super SPS, precise transversity distributions, first full set of GPD's, contributions from GSI and possibly eRHIC and upgraded JLAB.
- Very long term: Neutrino factory (and TeV lepton-proton collider) should open new extraordinary perspectives.