

Low Energy SPL Superbeam

Simone Gilardoni CERN – AB/ABP

Simone.Gilardoni@cern.ch

Contributions from: M. Mezzetto, M. Donega, V. Palladino, A. Cazes, J. E. Campange, A. Fabich, A. Blondel et al.

SPSC

Simone Gilardoni 24/09/2004

Example of conventional neutrino beam: WANF

<u>Superbeam basic ingredients</u>: Multi-MegaWatt proton source to produce a high intensity neutrino beam directed to a Multi-100 kTon neutrino detector.

<u>Aim</u>: Study the the oscillation of $v_{\mu} \rightarrow v_e$ to get θ_{13} and possibly to have a first hint of leptonic CP violation with a LBL experiment

SPSC

Simone Gilardoni

— 24/09/2004

Neutrino's beam future

From: Takashi Kobayashi, Paris 2004

	E _p (GeV)	Power (MW)	Beam	$\langle E_{v} \rangle$ (GeV)	L (km)	M _{det} (kt)	v _µ CC (/yr)	v _e @peak
K2K	12	0.005	WB	1.3	250	22.5	~50	~1%
MINOS(LE)	120	0.4	WB	3.5	730	5.4	~2,500	1.2%
CNGS	400	0.3	WB	18	732	~2	~5,000	0.8%
T2K-I	50	0.75	OA	0.7	295	22.5	~3,000	0.2%
NOvA	120	0.4	OA	~2	810?	50	~4,600	0.3%
C2GT	400	0.3	OA	0.8	~1200	1,000?	~5,000	0.2%
T2K-II	50	4	OA	0.7	295	~500	~360,000	0.2%
NOvA+PD	120	2	OA	~2	810?	50?	~23,000	0.3%
BNL-Hs	28	1	WB/OA	~1	2540	~500	~13,000	
SPL-Frejus	2.2	4	WB	0.32	130	~500	~18,000	0.4%
FeHo	8/120	"4"	WB/OA	1~3	1290	~500	~50,000	

Different experiment

Different approaches to have a Low Energy Neutrino Beam

- Energy range ~100 MeV 1 GeV
- OFF-axis beam: neutrino energy is selected by 2-body decay kinematics
- WB at low energy like the SPL

 $J_{CP} \equiv s_{12} s_{23} s_{13} c_{12} c_{23} c_{13}^2 \sin \delta$

Missing parameter in the neutrino oscillation probability:

- **θ**₁₃
- CP δ phase

SPSC

Superbeam flux

How to make a first step to measure θ_{13} and δ ? Study $\nu_{\mu} \rightarrow \nu_{e} \ (\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ oscillations at first maximum

SPSC

Simone Gilardoni

Proposal for a CERN - Super Beam

SPSC

Simone Gilardoni

fact

SuperBeam parameters

- Proton beam
 - 2.2 GeV
 - 4 MW
 - 50 Hz rep. rate
- Accumulator ring
- Mercury target
- Horn focusing
 - First horn 300 kA
 - Reflector 600 kA
- Low energy pion beam: $\approx 500 \text{ MeV}$
 - proton energy below kaon threshold
 - Short decay channel < 100 m
- Low energy neutrino beam: $\approx 250 \text{ MeV}$

Simone Gilardoni

- LINAC @ 4 MW
- Rep. Rate 50 Hz
- 2.27 10¹⁴ p/pulse (1.2 ms burst with 352 MHz bunching & 44 MHz time structure)
- SPL followed by an accumulator ring to reduce the pulse length
- SPL needed for LHC luminosity upgrade and next generation radio-active ion beam facility in Europe (EURISOL)
- 160 MeV linac ("Linac 4") justified as new PSB injector for LHC (ultimate luminosity and beyond) and ISOLDE (higher flux)
- 3 MeV pre-injector: approved

SPSC

Simone Gilardoni

24/09/2004

⁽see Garoby talk yesterday)

Old ISR tunnel, site of accumulator Radius = 150 m

SPSC

Simone Gilardoni 24/09/2004

- Accumulator
 - Macrobunch with internal 23 ns structure (44 MHz)
 - Macrobunch Rep. rate: 20 ms (50 Hz)
 - The energy remain fixed to the LINAC energy: 2.2 GeV
 - Necessary to reject atmospheric background with timing
- Compressor
 - Microbunch length reduction from 3.5 ns to 1 ns
 - This is not required for the Superbeam

SPL Proposed Roadmap

Consistent with the content of a talk by L. Maiani at the "Celebration of the Discovery of the W and Z bosons". Contribution to a document to be submitted to the December Council ("CERN Future Projects and Associated R&D").

Assumptions:

- construction of Linac4 in 2007/10 (with complementary resources, before end of LHC payment)
- construction of SPL in 2008/15 (after end of LHC payments)

- Mercury: Z = 80 \rightarrow short target Liquid \rightarrow easy to replace $(v_{//} \approx 20 \text{ m/s})$
- Dimensions: L \approx 30 cm, R \approx 1 cm

\rightarrow 4 MW of proton into more or less a pint of beer

- Different material pion production simulated with MARS
- Obs: Carbon will not survive at 4 MW

Event #11 25th April 2001

Protons

P-bunch:

Hg-jet:

perp. velocity $\sim 5 \text{ m/s}$

K. Mc Donald, H. Kirk, A. Fabich **SPSC** Simone Gilardoni

Picture timing [ms] 0.00 0.75 4.50 13.00

- •Target Experiment proposed at TT2A @ CERN for proof-of-principle test of a liquid jet target for high power proton beams
- Completion of the target R&D for final design of the Hg-Jet

	ISOLDE	GHMFL	BNL	TT2A	SuperB/NuFact
p+/pulse	3 10 ¹³		0.4 10 ¹³	2.5 10 ¹³	3 10 ¹³
B [T]		20		0 or 15	0 or 20 T
Hg target	static	15 m/s jet (d=4mm)	2 m/s jet	20 m/s jet	20 m/s jet (d=10mm)
	DONE	DONE	DONE	OPTION	DESIGN

Experimental setup: <u>15 T solenoid</u> + Mercury Jet + PS beam

 IMPORTANT: This experiment with the SOLENOID OFF is

 fundamental to understand jet disruption in the HORN neck

 SPSC
 Simone Gilardoni

Horn prototype @ CERN

SPSC

Simone Gilardoni 24/09/2004

SPSC

Simone Gilardoni

Horn design strategy

- Useful pions:
 - $E_{k} = 500 \text{ MeV}$
 - Max Neutrino Energy $\approx 270 \text{ MeV}$
 - Max point-to-parallel production angle
 - I = 300 kA $\Rightarrow \theta_{max}$ = 12 degrees
 - I = 600 kA $\Rightarrow \theta_{max}$ = 17 degrees
- Geometrical constraints:
 - Nothing in front of the primary proton halo
 - Nothing along the mercury direction
 - Maximum energy stored in the magnetic volume

- Decay channel used to control the beam related background
 - muon decay
 - wrong sign pions
- Length of typical 20 to 100 m since low energy pions
- Radius of 1 or 2 m tuned to cut the beam background
- Studies about activation of shielding/earth around decay channel already published using CNGS experience
 - Is it possible to have a 4 MW target station in the CERN area? YES

Flux computed by:

MARS for particle production+HORN Nubeam standalone program (M. Donega)

Chosen conditions

24/09/2004

Maximum neutrino flux \rightarrow longer decay channel

Beam background sources:

- 1. v_e from muon decay \rightarrow controlled with decay tunnel geometry Typical content 0.004 at peak
- 2. v_e from kaon decay \rightarrow kaon production not too relevant, low energy proton

Kaon Contamination

Number for 500 000 pot

• Two production processes (origin to be investigated in MC-Fluka)

- Anyway below 4 GeV, K⁺ production < 300 times the π^+ production.
- neutrino production associated to K⁺ seems to be negligible at 2.2 GeV

A. Cazes - LAL

Simone Gilardoni

24/09/2004

UNO-like detector

Obs: SuperBeam as a "customer" of a multipurpose detector

SPSC

Simone Gilardoni 24/09/2004

24/09/2004

μ/e Background Rejection

Simone Gilardoni 24/09/2004

π^0 event from K2K

Two rings similar to ν_e events due to small two ring separation

 π^0 production suppressed because of low energy neutrinos

Not the case for J-PARC

SPSC

Simone Gilardoni

24/09/2004

SPSC

Simone Gilardoni

24/09/2004

SUPER BEAM ONLY

CP violation measurement limited by the antineutrinos and the difference of the cross section at this energies where Q-E interaction dominates

Neutrino Interaction

Neutrino Cross section interaction

From Lipari

Simone Gilardoni

SPL SuperBeam FAQ

- Q: Why 2.2 GeV for the proton driver?
- A: First design of the SPL which used the LEP cavities.
- Q: What about increasing the proton energy ?
- A: Possible up to 3.5 GeV- 4 GeV with some caveats. Energy optimization to tune the proton beam energy is in working stage (see next slides).
- Q: Is the SPL SuperBeam strongly connected with the Frejus?
- A: Yes, due to low energy of proton beam no way to go further than 130 km.
- Q: What if instead of a Cherenkov detector one wants to use a Liquid Argon TPC ?
- A: Possible if the experts are interested in the location (meaning not going to Japan)
- Q: Why proposing the SPL Superbeam if JHF will have similar results?
- A1: Unique synergy with the Beta Beam
- A2: Learned from the Japanese style of working, and also from CERN style, every step carries the know-how for the next step. The next could be a NuFact.
- A3: Different condition to repeat the same measurement. In particular different background.

New study and optimisation

J.E. Campagne, A. Cazes LAL, Orsay

- Horn shape optimisation for 260MeV or 350MeV neutrinos
- decay tunnel length and radius
 - 10m < L < 60m
 - 1m < R < 2m</p>
- SPL energy optimisation
 - 2.2GeV, 3.5GeV, 4.5GeV \rightarrow 8GeV

Target simulated with FLUKA

24/09/2004

$\theta_{\textbf{13}} \text{ and } \delta_{\textbf{CP}} \text{ sensitivity}$

- The SPL SuperBeam would be the perfect user for a Megaton detector located in the Frejus tunnel
- The SPL SuperBeam can be very attractive to measure θ_{13} in different conditions (neutrino energy and beam contamination) than the T2K experiment
- The SPL SuperBeam + Beta Beam offer a unique opportunity for measuring CP and T violation
- Due to its design the SPL SuperBeam is the first step towards a CERN based-Neutrino Factory

