

EURISOL DS Approved EU design study for a next generation ISOL facility and a betabeam facility

Mats Lindroos on behalf of The EURISOL DS

• The SPL

The beta-beam base line design
The approved EURISOL(/beta-beam) Design Study

SPL beam characteristics (CDR 1)

Ion species	H-	
Kinetic energy	2.2	GeV
Mean current during the pulse	13	mA
Duty cycle	14	%
Mean beam power	4	MW
Pulse repetition rate	50	Hz
Pulse duration	2.8	ms
Bunch frequency (minimum distance between bunches)	352.2	MHz
Duty cycle during the pulse (nb. of bunches/nb. of buckets)	62 (5/8)	%
Number of protons per bunch	4.02 10 ⁸	
Normalized rms transverse emittances	0.4	π mm mrad
Longitudinal rms emittance	0.3	π deg MeV
Bunch length (at accumulator input)	0.5	ns
Energy spread (at accumulator input)	0.5	MeV
Energy jitter during the beam pulse	< ± 0.2	MeV
Energy jitter between pulses	< ± 2	MeV

SPL block diagram (CDR 1)

Superconducting linac: CDR 1

Layout (CDR 1)

The Super Beam

M-MWAII

The beta-beam

- Idea by Piero Zucchelli
 - A novel concept for a neutrino factory: the beta-beam, Phys. Let. B, 532 (2002) 166-172
- The CERN base line scenario
 - Avoid anything that requires a "technology jump" which would cost time and money (and be risky)
 - Make use of a maximum of the existing infrastructure
 - If possible find an "existing" detector site

Collaborators

• The beta-beam study group:

- **CEA, France:** Jacques Bouchez, Saclay, Paris Olivier Napoly, Saclay, Paris Jacques Payet, Saclay, Paris
- CERN, Switzerland: Michael Benedikt, Peter Butler, Roland Garoby, Steven Hancock, Ulli Koester, Mats Lindroos, Matteo Magistris, Thomas Nilsson, Fredrik Wenander
- Geneva University, Switzerland: Alain Blondel Simone Gilardoni
- **GSI**, **Germany**: Oliver Boine-Frankenheim B. Franzke R. Hollinger Markus Steck Peter Spiller Helmuth Weick
- IFIC, Valencia: Jordi Burguet, Juan-Jose Gomez-Cadenas, Pilar Hernandez, Jose Bernabeu
- IN2P3, France: Bernard Laune, Orsay, Paris Alex Mueller, Orsay, Paris Pascal Sortais, Grenoble Antonio Villari, GANIL, CAEN Cristina Volpe, Orsay, Paris
- INFN, Italy: Alberto Facco, Legnaro Mauro Mezzetto, Padua Vittorio Palladino, Napoli Andrea Pisent, Legnaro Piero Zucchelli, Sezione di Ferrara
- Louvain-la-neuve, Belgium: Thierry Delbar Guido Ryckewaert
- UK: Marielle Chartier, Liverpool university Chris Prior, RAL and Oxford university
- Uppsala university, The Svedberg laboratory, Sweden: Dag Reistad
- Associate: Rick Baartman, TRIUMF, Vancouver, Canada Andreas Jansson, Fermi lab, USA, Mike Zisman, LBL, USA

Target values for the decay ring

⁶Helium²⁺

- In Decay ring: 1.0x10¹⁴ ions
- Energy: 139 GeV/u
- Rel. gamma: 150
- Rigidity: 1500 Tm

18Neon¹⁰⁺ (single target)

- In decay ring: 4.5x10¹² ions
- Energy: 55 GeV/u
- Rel. gamma: 60
- Rigidity: 335 Tm
- The neutrino beam at the experiment should have the "time stamp" of the circulating beam in the decay ring.
- The beam has to be concentrated to as few and as short bunches as possible to maximize the number of ions/nanosecond. (background suppression), aim for a duty factor of 10⁻⁴

spallation +²⁰¹**Fr** 1 GeV p fragmentation $\bigcirc \bigcirc \bigcirc \bigcirc$ Ó \bigcirc ╋ ²³⁸U ¹¹Li Х fission ● n ● p ¹⁴³Cs

Y

ISOL production

Interchangeable

►

H.Ravn, U.Koester, J.Lettry,

S.Gardoni, A.Fabich

Production of β^{\star} emitters

- Spallation of close-by target nuclides: ^{18,19}Ne from MgO and ^{34,35}Ar in CaO
 - Production rate for ¹⁸Ne is 1x10¹² s⁻¹ (with 2.2 GeV 100 µA proton beam, cross-sections of some mb and a 1 m long oxide target of 10% theoretical density)

High power target

 Sequential filling of 16 buckets in the PS from the storage ring

Stacking in the Decay ring

- Ejection to matched dispersion trajectory
- Asymmetric bunch merging

- Losses during acceleration are being studied:
 - Full FLUKA simulations in progress for all stages (M. Magistris and M. Silari, *Parameters* of radiological interest for a beta-beam decay ring, TIS-2003-017-RP-TN)
 - Preliminary results:
 - Can be managed in low energy part
 - PS will be heavily activated
 - New fast cycling PS?
 - SPS OK!
 - Full FLUKA simulations of decay ring losses:
 - Tritium and Sodium production surrounding rock well below national limits
 - Reasonable requirements of concreting of tunnel walls to enable decommissioning of the tunnel and fixation of Tritium and Sodium

- Dipoles can be built with no coils in the path of the decaying particles to minimize peak power density in superconductor
 - The losses have been simulated and one possible dipole design has been proposed

S. Russenschuck, CERN

Tunnels and Magnets

- Civil engineering costs: Estimate of 400 MCHF for 1.3% incline (13.9 mrad)
 - Ringlenth: 6850 m, Radius=300 m, Straight sections=2500 m
- Magnet cost: First estimate at 100 MCHF

FLUKA simulated losses in surrounding rock (<u>no</u> public health implications)

Intensities

Stage	⁶ He	¹⁸ Ne (single target)
From ECR source:	2.0×10 ¹³ ions per second	0.8×10 ¹¹ ions per second
Storage ring:	1.0x10 ¹² ions per bunch	4.1×10 ¹⁰ ions per bunch
Fast cycling synch:	1.0x10 ¹² ion per bunch	4.1×10 ¹⁰ ion per bunch
PS after acceleration:	1.0x10 ¹³ ions per batch	5.2×10 ¹¹ ions per batch
SPS after acceleration:	0.9×10 ¹³ ions per batch	4.9×10 ¹¹ ions per batch
Decay ring:	2.0x10 ¹⁴ ions in four 10 ns long bunch	9.1x10 ¹² ions in four 10 ns long bunch

Only β -decay losses accounted for, add efficiency losses (50%)

R&D (improvements)	fact to
SPL + ISOL Target + ECR + ECR	
 Production of RIB (intensity) Simulations (GEANT, FLUKA) Target design, only 100 kW primary proton beam in present design 	1

- Acceleration (cost)
 - FFAG versa linac/storage ring/RCS
- Tracking studies (intensity)
 - Loss management
- Superconducting dipoles (γ of neutrinos)
 - Pulsed for new PS/SPS/Decay ring (GSI FAIR)
 - High field dipoles for higher gamma in the decay ring and/or accelerating decay ring
 - Radiation hardness (Super FRS)

- Total budget is 33293300 (9161900 from EU)
- Start date: 1 January 2005
- Objective: TDR for end of 2008
- Objective: TDR enabling the Nuclear physics and Neutrino physics communities to take a decision about a future facility
- 2009: Fix site and apply for EU construction project

Stake holders

Beta-beam task

- Objective: Study all components of a betabeam facility above 100 MeV/u
- **Deliverable:** Conceptual Design Report (CDR) for a beta-beam facility
- Participating institutes: CERN, CEA, IN2P3, CLRC-RAL, GSI, MSL-Stockholm
- Parameter group to define the conceptual design and follow the evolution of the beta-beam facility: Higher intensities and higher gamma

Work Units (WU) in beta-beam task

- Low energy ring and RCS: CERN leads the WU
- PS and SPS: CERN leads the WU
- Replacements for PS and SPS: GSI will be asked to lead
 WU
- Design of decay ring: CEA leads the WU
- Collimation and machine protection (simulation of decay losses): CERN leads the WU
- Low energy ring, study of critical components: MSL leads the WU
- Longitudinal simulations and stacking: CERN leads the WU
- Parameter group: Chaired by Steve Hancock, CERN
- Synergies to nufact: RAL will be asked to lead the WU

Present CERN commitement (including EU): 17 FTE over 4 years

EURISOL DS General: beta-beam

- Driver: LNL leading task, CERN participates through HIPPI (SPL)
- Target tasks: CERN leads the tasks for 100 kW and MW targets
- Beam preparation: Jyväskylä Univ. leads the task, IN2P3 leads the work unit for 60 GHz ECR source for stripping and bunching
- Heavy-ion accelerator: GANIL leads the task for acceleration up to 100 MeV/u
- **Physics:** Liverpool leads the task, IN2P3-Orsay leads the work unit on the Low energy beta-beam
- And more...

Beta-beam

CERN Job descriptions

- Title: Accelerator physicist
 - Name: Mats Lindroos
 - Availability: 0.5 FTE/year
- Title: Accelerator physicist
 - Name: Michael Benedikt
 - Availability: 0.5 FTE/year
- Title: Accelerator physicist
 - Name: Steven Hancock
 - Availability: 0.5 FTE/year
- Title: Accelerator physicist
 - Name: New staff, To be advertised autumn 2004
 - Availability: 1 FTE/year
- Title: Physicist or engineer
 - Name: New fellow (3 years), To be advertised autumn 2004
 - Availability: 1 FTE/year
- Title: Physicist or engineer
 - Name: New fellow (3 years), To be advertised autumn 2004
 - Availability: 1 FTE/year

- A boost for radioactive nuclear beams
 - A boost for neutrino physics

 A lot of work but it is time for action (and not only talking)!