

Present Performance of the CERN Accelerator Complex

Michael Benedikt AB Department, CERN

22/09/04

SPSC -Villars 2004

M. Benedikt 1

Outline

- Introduction
 - Aims of the study
 - Assumptions and "rules" for the analysis
- Operation of the Accelerator Complex
 - Assumed Machine Schedules 2006 2010
 - SPS operation modes with and without LHC operation
 - Supercycle compositions for SPS and PS
- Performance of the Accelerator Complex
 - CNGS
 - SPS Fixed Target Physics
 - PS EAST AREA, nTOF and AD
 - ISOLDE
- Conclusions

Introduction

• Aims of the study

- Estimate availability of proton beams for 2006 2010.
- Comparison to the anticipated physics programme.
- Detection of eventual shortfalls in beam availability.
- Search for upgrade and improvement possibilities.
- Study was made in 2003 in the framework of the "High Intensity Proton Working Group" of AB Department.
- "Report of the High Intensity Proton Working Group", CERN-AB-2004-022 OP/RF
- Members: M. Benedikt, K. Cornelis, R. Garoby (study leader),
 E. Metral, F. Ruggiero, M. Vretenar.

Strategy for the Analysis

- Provide a transparent analysis based on a well defined model for ۲ operation (running time, supercycles, etc.)
 - Estimate the yearly time available for all physics operation.
 - Calculate the time required to fulfil each physics user request (based on present performance in routine operation, e.g. intensity...).
 - Assign time slots to different physics users, respecting eventual supercycle constraints.
- Distribution of beam time used for the analysis ٠
 - Fulfil LHC beam request \rightarrow fixes time for SPS physics (CNGS + FT).

 - Fulfil CNGS request \rightarrow fixes time for SPS FT
 - \rightarrow fixes remaining time on PS and Booster.
 - Fulfil PS EAST and nTOF requests \rightarrow fixes Booster time for ISOLDE.
- NOTE: The distribution used for the analysis is by no means a • definition of priorities for future operation!

22/09/04

Assumed Machine Schedules

- Total running time 6000 h (PS) and 5500 h (SPS).
- Reduced by start-up, setting-up time and dedicated MDs.
- Correction for machine availability; experience: 90% (PS), 80% (SPS).
- Gives effective time for physics operation.

		20	06		2007 -	2010			
		PSB/PS SPS		PSB/PS	SPS complex		LHC		
		complex	complex	complex	2007*	2008-10			
Total running time with beam	[h]	6000	5500	6000	5500	5500	5000		
Setup and dedicated MD	[h]	1500	1500	600	1000	800	-		
Physics operation	[h]	4500	4000	5400	4500	4700	-		
Effective physics hours	[h]	4050	3200	4860	3600	3760	_		

- 2006: more time needed for start-up after long shut-down.
- 2007: LHC operation assumed to start in April, 5000 h / year.
- 2007* : Ions for LHC commissioning in SPS requires ~200 h operation time.

SPS Operation Modes (i)

From start of LHC in 2007 there will be 3 SPS operation modes:

- LHC filling mode (single SPS user):
 - For preparation of filling and during filling.
 - The SPS supercycle will contain only the full LHC cycle to guarantee a fully identical machine situation from cycle to cycle.
 - No other SPS physics in parallel.
- LHC set-up mode (multiple SPS users):
 - For verification of injection lines, problem investigations, etc.
 - The SPS supercycle will contain only the short LHC pilot cycle and either CNGS or FT cycles so that every 20s s pilot is available.
- CNGS FT mode (multiple SPS users):
 - Whenever there is no LHC request (e.g. during physics, access).
 - The SPS supercycle will contain CNGS, FT and MD cycles.

SPS Operation Modes (ii)

- Estimated distribution of SPS operation modes from LEP experience:
 - 2007: 50% of overall SPS time with 15% filling and 35% set-up mode.
 - LHC request should fall ~linearly to 15% of overall SPS time by 2010.
 - Once the LHC starts with ions, no difference is expected for the distribution of operation modes.

SPS operation mode		2006	2007	2010
Physics operation	[h]	4000	4500	4700
LHC filling mode	[%]	0	15	5
LHC setup mode	[%]	0	35	10
CNGS – FT mode	[%]	100	50	85

 The switching time between different operation modes (supercycles) should be below 10 min, work in progress.

SPS Supercycle Composition (i)

- LHC filling mode:
 - Full LHC cycle (4 batch injection plateau). No other cycles. 21.6 s
- LHC set-up mode:
 - Single batch LHC (1 injection) and 2 CNGS. 10.8 s + 2 x 6 s = 22.8 s.

- LHC requirement for pilot bunch every 20 25 s fulfilled.
- Replacing the two CNGS by a single FT cycle (12 s) is not possible due to SPS main magnet rms power limitation. An additional "low power" MD cycle would be needed.

SPS Supercycle Composition (ii)

- CNGS FT mode:
 - 3 CNGS, 1 FT, 1 MD cycle. 3 x 6 s + 12 s + 4.8 s = 34.8 s.

- This SC was used for the study but again other combinations are possible.
- Various combinations from only CNGS + MD to only FT + MD are feasible from machine operation point of view.
- For continuous running with CNGS there will be radiation protection problems in the PS complex (CT transfer extraction) – study ongoing.

PS and PSB Supercycles

- PS and PSB SC can be modified on a cycle to cycle basis, in general more flexibility than for the SPS.
- Highest priority are all beams requested by SPS.
- Remaining slots on PS will be distributed:
 - East Area with parasitic nTOF.
 - nTOF (dedicated operation).
 - MD (PS).
 - AD operation is transparent, single cycle every ~2 min.
- Remaining slots on PSB:
 - ISOLDE.
 - MD (PSB)

CNGS Performance

- Requested performance:
 - 4.5E19 protons on target per year.
- Standard operation conditions:
 - 4.4E13 protons on target / SPS CNGS cycle (90% record intensity).
 - 1E6 SPS cycles to fulfil request. (90 days of continuous running, machine availability included.)

Year	SPS physics operation [hours]	SPS in CNGS-FT or LHC setup mode [%]	Available [pot per year]	Requested [pot per year]
2006	4000	100	$4.4 imes 10^{19}$	$4.5 imes 10^{19}$
2007	4500	85	4.2×10^{19}	$4.5 imes 10^{19}$
2010	4700	95	$4.9 imes 10^{19}$	$4.5 imes 10^{19}$

22/09/04

CNGS Operation - Beam Losses

• Based on high intensity SPS FT operation 97/98 (similar to CNGS).

Machine / process	Intensity/cycle	Transmission	Loss/year
CNGS target	4.40×10^{13}		
SPS 400 GeV to target (fast extraction)		~100%	negligible
400 GeV SPS	$4.40 imes 10^{13}$		
TT10 to SPS 400 GeV (two injections)		92%	4.2×10^{18}
TT2/TT10 (two batches)	$4.78 imes 10^{13}$		
Continuous transfer PS - TT2 (two batch)		90%	$6.8 imes 10^{18}$
PS 13 GeV (two batches)	$5.31 imes 10^{13}$		
PSB 1.4 GeV to PS 13 GeV (two batch)		92%	$5.9 imes10^{18}$
PSB 1.4 GeV (two batch)	5.78×10^{13}		

• For 4.5E19 pot, 1.7E19 lost in the accelerators (~factor 2 more than '98).

- PS CT is most critical process, 40% of all losses (studies for replacement).
 - More maintenance, longer cooling down, increased dose to personnel.
 - Continuous CNGS operation with nominal intensity will exceed dose rate limits in several surface buildings close to PS tunnel.

SPS Fixed Target Performance

- Requested performance:
 - 7.2E5 spills per year (COMPASS proposal 1996).
- Standard operation conditions:
 - Spill of 4.8s per SPS FT cycle, considered a routine operation.

Year	SPS physics operation [hours]	SPS in CNGS – FT mode [%]	Spills for FT physics	FT physics request
2006	4000	100	$3.3 imes10^5$	$7.2 imes 10^5$
2007	4500	50	$1.8 imes 10^5$	$7.2 imes 10^5$
2010	4700	85	$3.3 imes 10^5$	$7.2 imes 10^5$

- Available spills are significantly below request.
- FT is competing with CNGS for SPS operation time, performance depends linearly on assigned operation periods.
- Any additional SPS programme e.g. non LHC ion physics is also competing.

CNGS vs. FT Performance

FT vs. CNGS performance 2006, 2007, 2010

SPSC -Villars 2004

22/09/04

PS East Area and nTOF Performance

- Assumed requests:
 - 1.3E6 spills (2006), 2.3E6 spills (from 2007) for East Area (DIRAC proposal).
 - 1.5E19 protons on target for nTOF.
- Standard operation conditions:
 - Spill of ~450 ms per East Area cycle, routine operation.
 - 4E12 pot for parasitic nTOF and 7E12 pot for dedicated operation.

Year	PS physics operation [hours]	Spills to East Area	East Area request	Protons for nTOF	nTOF request
2006	4500	$1.3 imes 10^6$	$1.3 imes10^{6}$	$1.4 imes 10^{19}$	$1.5 imes 10^{19}$
2007	5400	$2.3 imes 10^6$	$2.3 imes10^{6}$	$1.6 imes 10^{19}$	$1.5 imes 10^{19}$
2010	5400	$2.3 imes 10^6$	$2.3 imes10^{6}$	$1.6 imes 10^{19}$	$1.5 imes 10^{19}$

- PS user requests can be fulfilled (AD included).
 - No cycles assigned to East Area test beams.

ISOLDE Performance

- Assumed request:
 - 50% of yearly PSB cycles (1350 cycles/hour on average).
- Standard operation conditions:
 - Up to 3.3E13 pot per cycle, routine operation.

Year	PSB physics operation [hours]	PSB cycles to ISOLDE [%] [cycles/h]		PSB cycles requested [%] [cycles/h]	
2006	4500	48 %	1296	50%	1350
2007	5400	43 %	1160	50%	1350
2010	5400	45 %	1220	50%	1350

- Isolde performance estimated to be around 10% below request.
 - Increase of East Area spills or CNGS operation in double batch mode will have direct impact on ISOLDE performance.

22/09/04

Conclusions

- All present requests for physics on PS can be fulfilled.
- ISOLDE performance is around 10% below request.
- Significant shortfall on SPS for CNGS and FT physics together. Any additional SPS programme will be competing for operation time.
- The only immediate "fix" would be to increase the yearly physics operation time (potential gain for all users).

Outlook

- A possible scenario for improvement:
 - Significant increase of intensity per SPS CNGS cycle.
 - Redistribution of the "gained" SPS operation time.
 - Machine operation issues (how to do this).
 - Radiation protection issues (PS Continuous Transfer Extraction).
 - Requires 2 batch injection from PSB to PS (i.e. twice as many PSB cycles).
 - Will decrease significantly ISOLDE performance.
- 3 studies have been launched in this context:
 - "Increase of intensity per pulse for CNGS operation" (PS&SPS high intensity).
 - "Multi-turn island extraction from the PS" to replace C.T. and reduce losses.
 - "Increase of the PSB repetition rate" to have more PSB cycles available.