Search for Lepton Flavor Violation in the µ + N -> τ + N conversion (preliminary)

S.N. Gninenko INR, Moscow

SPSC meeting, Villars, September 22-28, 2004

SPSC, Villars, September 22-28, 2004

- Introduction
- μ +N-> τ +N conversion
- Choice of signature
- Experimental setup
- Signal/Background simulations
- Results
- Summary

Introduction

- SuperK'98 result: v_u and/or v_t are not massless, v_u-v_t mixing is large. First observation of the LFV process with neutral leptons. SM has no LFV: New physics.
- Suggests LFV for associated μ, τ -leptons
- LFV involving charged leptons has never been observed. In many models LVF is natural
 - SUSY
 - Left-Right Symmetric Model
 - Top seesaw,
 - Extra dimensions
 - Higgs mediated LFV
- In some models LFV processes for tau are enhanced over muon processes

Experimental Limits on LFV

Reaction	90% CL Upper Limit		
μ ⁺ → e ⁺ γ	1.2 x 10 ⁻¹¹		
μ ⁺ → e ⁺ e ⁻ e ⁺	1.0 x 10 ⁻¹²		
µ⁻ Ti → e⁻ Ti	4.3 x 10 ⁻¹²		
µ⁻ Pb → e⁻ Pb	4.6 x 10 ⁻¹¹		
µ⁻ Au → e⁻ Au	4.4~6.8 x 10 ⁻¹³		
µ⁻ Ti → e⁺ Ca	3.6 x 10 ⁻¹¹		
μ⁻ e⁺ → μ⁺ e⁻	8.3 x 10 ⁻¹¹		
т → е γ	2.7 x 10 ⁻⁶		
τ → μγ	1.1 x 10 ⁻⁶		
τ→eee	2.9 x 10 ⁻⁶		
τ→μμμ	1.9 x 10 ⁻⁶		
K _L → μe	4.7 x 10 ⁻¹²		
K _L → π ⁰ μe	6.2 x 10 ⁻⁹		
$K^+ \rightarrow \pi^+ \mu e$	2.8 x 10 ⁻¹¹		
D ⁰ → µе, φ µе	8.1 x 10 ⁻⁶ , 3.4 x 10 ⁻⁵		
В → µе, К µе	1.5 x 10 ⁻⁶ , 8 x 10 ⁻⁷		
Z → μ e, τ e, τμ	1.7 x 10 ⁻⁶ , 9.8 x 10 ⁻⁶ , 1.2 x 10 ⁻⁵		
J/ψ → μ τ, e τ	2.0 x 10 ⁻⁶ , 8.3 x 10 ⁻⁶		

Future Plans

Focus on μ -e sector: BNL: $\mu^{-}+Al \rightarrow e^{-}+Al < 10^{-16}$ PSI: $\mu^{-} \rightarrow e^{-}+\gamma < 10^{-14}$ J- Parc: $\mu^{-} \rightarrow e^{-} < 10^{-18}$

For $\mu - \tau$ sector limits are quite modest

SPSC, Villars, September 22-28, 2004

 The similar experiment to search for τ+A->μ+A would be very interesting, but too short τ-lifetime (< 0.3 ps) makes it unrealistic.

• Inverse process μ + N-> τ +N is possible for muon energy E_{μ} > ~3 GeV at p or n.

Is it interesting?
 Gninenko at el.(2002), Sher & Turan. (2004)

More theoretical attention is required compare to μ+A->e+A

Phenomenology

U

 $q \qquad q'$ $1/\Lambda^{2}(\mu \Gamma \tau) (q^{\alpha} \Gamma q^{\beta})$ $c : \text{ week limit on } \Lambda \text{ for } (\mu \tau)(u c)$

- enhances motivation to search for $\mu{-}\tau$ conversion
- emphasizes need to test LFV in both rare τ decays and in $\mu-\tau$ conversion at high energies

Note: $\Lambda - Br(\tau - >...)^{-1/4}$

SPSC, Villars, September 22-28, 2004

	l	_imits	on	Bl	ack et d	al.
		5	PS	V	А	
ūu		$\begin{array}{c} 2.6 \ \mathrm{TeV} \\ (\tau \to \mu \pi^+ \pi^-) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \rightarrow \mu \pi^0) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \to \mu \rho) \end{array}$	$\begin{array}{c} 11 \ \mathrm{TeV} \\ (\tau \to \mu \pi^0) \end{array}$	
$\bar{d}d$		$\begin{array}{c} 2.6 \ \mathrm{TeV} \\ (\tau \to \mu \pi^+ \pi^-) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \rightarrow \mu \pi^0) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \to \mu \rho) \end{array}$	$\begin{array}{c} 11 \ {\rm TeV} \\ (\tau \rightarrow \mu \pi^0) \end{array}$	
$\bar{s}s$		$\begin{array}{c} 1.5 \ \mathrm{TeV} \\ (\tau \rightarrow \mu K^+ K -) \end{array}$	9.9 TeV $(\tau \rightarrow \mu \eta)$	$\begin{array}{c} 14 \ \mathrm{TeV} \\ (\tau \to \mu \phi) \end{array}$	$\begin{array}{l} 9.5 \ {\rm TeV} \\ (\tau \rightarrow \mu \eta) \end{array}$	
$\overline{s}d$		$\begin{array}{c} 2.3 \ {\rm TeV} \\ (\tau \rightarrow \mu K^+ \pi^-) \end{array}$	$\begin{array}{c} 3.7 \ {\rm TeV} \\ (\tau \rightarrow \mu K^0) \end{array}$	$\begin{array}{c} 13 \ \mathrm{TeV} \\ (\tau \rightarrow \mu K^{\star}) \end{array}$	$\begin{array}{c} 3.6 \ {\rm TeV} \\ (\tau \rightarrow \mu K^0) \end{array}$	
$\overline{b}d$		$\begin{array}{c} 2.2 \ \mathrm{TeV} \\ (B \to \pi \mu \tau) \end{array}$	$\begin{array}{l} 9.3 \ {\rm TeV} \\ (B \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 2.2 \ {\rm TeV} \\ (B \rightarrow \pi \mu \tau) \end{array}$	$\begin{array}{c} 8.2 \ {\rm TeV} \\ (B \rightarrow \mu \tau) \end{array}$	
$\bar{b}s$		$\begin{array}{c} 2.6 \ \mathrm{TeV} \\ (B \to K \mu \tau) \end{array}$	$\begin{array}{c} 2.8 \ {\rm TeV} \\ (B_{\rm s} \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 2.6 \ {\rm TeV} \\ (B \rightarrow K \mu \tau) \end{array}$	$\begin{array}{c} 2.5 \ {\rm TeV} \\ (B_{\rm s} \rightarrow \mu \tau) \end{array}$	
$\bar{t}c$		$\begin{array}{c} 190 \ \mathrm{GeV} \\ (t \to c \mu \tau) \end{array}$	$\begin{array}{l} 190 \ {\rm GeV} \\ (t \rightarrow c \mu \tau) \end{array}$	$\begin{array}{c} 310 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 310 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$	
$\bar{t}u$		$\begin{array}{c} 190 \ \mathrm{GeV} \\ (t \rightarrow u \mu \tau) \end{array}$	$\begin{array}{c} 190 \ {\rm GeV} \\ (t \rightarrow u \mu \tau) \end{array}$	$\begin{array}{c} 650 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 650 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$	
$\bar{c}u$		*	*	$\begin{array}{l} 550 \ \mathrm{GeV} \\ (\tau \to \mu \phi) \end{array}$	$\begin{array}{l} 550 \ {\rm GeV} \\ (\tau \rightarrow \mu \phi) \end{array}$	
<i>ī</i> c		*	*	$\begin{array}{l} 1.1 \ \mathrm{TeV} \\ (\tau \rightarrow \mu \phi) \end{array}$	$\begin{array}{l} 1.1 \ {\rm TeV} \\ (\tau \rightarrow \mu \phi) \end{array}$	
$\overline{b}b$		*	*	$\frac{180 \text{ GeV}}{(\Upsilon \to \mu \tau)}$	*	
Īt		*	*	$\begin{array}{c} 75 \ \mathrm{GeV} \\ (B \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 120 \ \mathrm{GeV} \\ (B \rightarrow \mu \tau) \end{array}$	

Cross section for DIS μ + N -> τ + N

$$\sigma(\mu + q \to \tau + q) = \left(\frac{\pi s}{3\Lambda^4}\right) \left(1 - \frac{m_\tau^2}{s}\right)^2 \left(1 + \frac{m_\tau^2}{2s}\right)$$

- cross section is model dependent
- S cross section is ~ 1fb at ~100 GeV
- V cross section is suppressed by the limit on Λ , $\sigma \sim 1/\Lambda^4$
- primary muon energy should be more than ~20 GeV

Rate estimate for $\mu + N \rightarrow \tau + N$

$$N_{\mu \rightarrow \tau} = N_{\mu} \sigma L \rho N_{A} Br(\tau \rightarrow ...)$$
ε

- muon energy E_u=100 GeV
- cross section $\sigma \sim 1$ fb
- muon integral flux N₁₁ = 10¹⁵
- target length L = 100 cm
- target density ρ ~10 g/cm³, e.g. PWO crystals
- branching ratio $Br(\tau \rightarrow ...) \sim 17 \%$
 - $\tau \to \mu \nu \nu$ 17% $\tau \to e \nu \nu$ 17% $\tau \to \pi \nu$ 11%
- efficiency ε~100 %

For $(\mu \tau)(q q)$, q=u,dN $_{\mu \to \tau} = 120$ events

For $(\mu \tau)(u c) N_{\mu \rightarrow \tau}$ could be much higher

$\mu + N \rightarrow \tau + N$: Choice of the Signature

DIS: μ + N -> τ +X (e, γ, μ, h, ..)

- for any τ decay mode, the μ photoproduction is the main source of background, $\sigma(\mu-\tau)/\sigma_{\mu}(\gamma) < 10^{-10}$
- complicated final state and analysis
- many possibilities for background

quasi-elastic (QE) μ + N ->τ + N', and/or coherent μ + A-> τ + A (?)

- two-body reaction,
- low momentum transfer
- smaller cross sections
- enhancement for coherent μ - τ ?
- monoenergetic τ
- small energy of N' or N* , < ~ 1 GeV

So far $\tau \rightarrow \mu \nu \nu, \pi \nu$

Signature:

- single μ , π
- large missing E
- missing Pt
- small E_{TARGET}

Comment on background

Large missing energy is one of the keys, good hermiticity is important

If detector is hermeticleakages are mostly due to X neutrino decays: X -> $V + L_V$ (associated lepton, LF conservation !).

If neutrino energy is ~a few 10s GeV, small E_L from X -> $v + L_v$ is very unlikely.

High suppression of photoproduction.

Week μ ->v reactions are another source of background, $\sigma(\mu$ -> $\tau)/\sigma(\mu$ ->v) ~10⁻⁴- 10⁻²

Experimental Setup

- high rate capability: simple design
- active target with low energy threshold
- hermetic (good $\sim 4\pi$ coverage) detector
- electromagnetic & hadronic calorimeter energy resolution, granularity
- high in/out going muon momentum resolution

Simulations

Analogy with v-induced reactions used in simulations, e.g. :

- $\begin{array}{c} \mathbf{v}_{\tau} + \mathbf{p} \rightarrow \tau + \mathbf{n} \\ \widehat{\mathbf{l}} & \widehat{\mathbf{l}} \\ \mu + \mathbf{p} \rightarrow \tau + \mathbf{p} \end{array}$
- $vCC \iff \mu CC$

Nomad configuration/software (WA-96, Search for $v_u \rightarrow v_\tau$)

 Gninenko et. al (2002)
 (μτ)(cu)

 Sher and Turan (2004)
 (μτ)(qq)

SPSC, Villars, September 22-28, 2004

QE: $\mu + N \rightarrow \tau + N$ signal simulation

SPSC, Villars, September 22-28, 2004

Background sources for QE ($\mu \rightarrow \tau$) + $\tau \rightarrow \mu \nu \nu$

The goal is to search for a few, at most ~100 $\mu-\tau$ induced events among ~10^{12} μ interactions. Background sources have to be explored down to 10^{-12}

- Beam related:
- low energy tail E < 50 GeV
- π /K decays in flight: $f_{\pi} \times P_{Dec} \times P_{\mu}$ (E<E cut) $\times P_{ECAL}$ <u>K decays are more dangerous</u>
- DIS like QEL
- μ +N-> μ '+ neutrals + leakage
- μ +N-> μ '+ X->L+ ν +.....

μ V V final state

- $\mu CC: \mu + N -> \nu + X -> \mu + ...$
- •QE or Coherent trilepton production µ+A->µ+v+v+A
- Coherent π production
 - μ+A->ν+π+A μ+ν

-

 Single charm production: µ+d,s->v+c -> s+µ+v
 (beam sign is important !)

10⁴ simulated events at 100 GeV 1 event found

SPSC, Villars, September 22-28, 2004

Coherent $\mu + A \rightarrow \nu + \pi + A$

Events/1 GeV Events/1 GeV Additional suppression due to π decay in flight ■~50% μ < **10 GeV** Muon energy, GeV Events/1.0 GeV ECAL < 1 GeV Pt < 1.5 GeV/c

Coherent trilepton production $\mu + A \rightarrow \nu + \mu + \nu + A$

CHARM II '91: σ~0.03 fb at <E>~24 GeV

Summary of background for the QE reaction : $\mu + N -> \tau + N -> \mu \ v \ v + N$

Source of background	Rate per µ interaction (very preliminary)
E< ~50 GeV muons in the beam from $\pi/{\rm K}~$ decays	tbd
$\boldsymbol{\mu}$ photoproduction	tbd
DIS μ CC	~10-14
Coherent trilepton µ+A–>µ+v+v+A	~10-14
Coherent π production μ+A–>v+π+A	~10 ⁻¹⁵
single charm in µCC	<10-14

People/Institutes involved

Experimental groups

- LAPP, Annecy
- INR, Moscow
- IHEP, Protvino
- ETH, Zurich (help/experience with simulations, A.Rubbia's group)

Theoretical groups

- College William and Merry, Williamsburg
- INR, Moscow

Also,

- Osaka Univ., S. Kanemura et al., talk at Tau'04, 16 Sept. 2004.
- JINR, Dubna, S. Kovalenko
- H. Kosmas's group (Ioannina and Tuebingen) , coherent $\,\mu{-}\tau$ cross section

- search for LFV in muon to tau conversion would be interesting and challenging
- further work is required to study
 - muon beam : energy, intensity, purity, ...
 - target: composition, mass, ...
 - detector: rate capability, precision, ...
 - production mechanism and cross sections
 - best experimental signature
 - signal/background: MC simulations, tools, ...
 and demonstrate feasibility of the experiment