Critical Behaviour in QCD #### **Helmut Satz** Universität Bielefeld, Germany and Instituto Superior Técnico, Lisboa, Portugal CERN SPSC 2004 ${\bf Villars,\ Switzerland}$ # Fundamental Problems of Physics ## constituents ## forces quarks leptons gluons, photons vector bosons (Z, W^{\pm}) Higgs strong e-m weak gravitation unification, TOE ## elementary interactions # complex systems, critical behaviour ### states of matter # transitions solid, liquid, gas, plasma insulator, conductor superconductor, ferromagnet fluid, superfluid glass, gelatine, network thermal phase transitions percolation transitions scaling, renormalization critical exponents universality classes Complex Systems \Rightarrow New Direction in Physics # Statistical QCD: \exists transition hadronic matter \rightarrow quark-gluon plasma # High Energy Heavy Ion Programme study in the laboratory - deconfinement transition - properties of QGP # Capabilities - deconfinement transition: SPS, RHIC - properties of QGP: SPS, RHIC, LHC #### Contents - 1. What is critical behaviour? - 2. Critical phenomena in QCD - 3. QCD transitions in nuclear collisions - 4. Summary ## 1. What is critical behaviour? ## divergent or discontinuous behavior of observables (natura facit saltum) #### example: magnetization transition in a spin system Ising model: $s_i = \pm 1 \ \forall i = 1, ..., N$ average spin m(T) in thermodynamic limit $(N \to \infty)$: m(T) is not analytic ('not smooth') $$m(T) \sim \begin{cases} (T - T_c)^{\beta} > 0 & \forall \ T < T_c \\ 0 & \forall \ T > T_c \end{cases}$$ discontinuous change of m(T) at $T = T_c$: \Rightarrow critical exponent β higher derivatives: susceptibility $$\chi(T) \sim |T - T_c|^{-\gamma}$$ \Rightarrow critical exponent γ and other observables diverge as well, give more critical exponents critical behaviour of a system fully specified by the set of critical exponents $\alpha, \beta, \gamma, ...$; can be reduced to two independent exponents (universality class) But why is there singular behaviour? ⇒ spontaneous symmetry breaking Ising Hamiltonian is invariant under $\uparrow \leftrightarrow \downarrow$ flips at $T = T_c$, state of system spontaneously breaks flip symmetry, chooses either \uparrow or \downarrow . breaking symmetry is "either-or": you cannot do it "a little" \Rightarrow singular observables # \Rightarrow Thermodynamic Cri<u>tical Behaviour</u> \Leftarrow - onset of spontaneous symmetry breaking - singular behaviour of thermodynamic observables* ^{*} divergence : continuous transition discontinuity : first order transition thermal transitions, critical behaviour: dynamics \rightarrow non-analytic partition function given constituents with intrinsic scale, ∃ more general form of critical behaviour: ⇒ formation of infinite cluster, network example: 2-d disk percolation (lilies on a pond) distribute small disks of area $a = \pi r^2$ randomly on large area $F = L^2$, $L \gg r$, with overlap allowed for N disks, disk density n = N/F average cluster size S(n) increases with increasing density n ∃ critical density: for $$n \rightarrow n_c = 1.13/a$$ S(n) spans area $F: S \sim F$ for $$N \to \infty, F \to \infty$$: $$S(n_c)$$ and $(dS(n)/dn)_{n=n_c}$ diverge: \Rightarrow percolation probability P(n) that given disk in infinite cluster $$P(n) \left\{ egin{aligned} &= 0 & \forall \ n < n_c \ \\ &\sim (n-n_c)^{\pmb{\beta}} & \text{for } n \to n_c \text{ from above} \end{aligned} \right.$$ \Rightarrow order parameter for percolation average cluster size diverges $$\tilde{S}(n) \simeq |n - n_c|^{-\gamma}$$ so do other observables: again singular behaviour, as function of density n instead of temperature T ⇒ critical exponents, universality classes Again, why is there singular behaviour? ⇒ spontaneous global connection connected or disconnected, not "gradual" # \Rightarrow Geometric Critical Behaviour \Leftarrow - onset of infinite cluster/network formation - singular behaviour of geometric observables - Thermodynamic critical behaviour: spontaneous symmetry breaking as function of T - Geometric critical behaviour: spontaneous global connection as function of n geometric critical behaviour can occur even if the partition function is analytic ⇒ geometric without thermodynamic criticality (spin systems in external magnetic field) ## 2. Critical Behaviour in QCD What happens to strongly interacting matter at high temperatures and/or densities? • colour deconfinement hadronic matter: colourless constituents of hadronic dimension quark-gluon plasma: pointlike coloured constituents • chiral symmetry restoration hadronic matter: quarks acquire effective mass $M_q \neq 0$ quark-gluon plasma: $M_q \rightarrow m_q = 0$, chiral symmetry restored • colour superconductivity deconfined quarks \rightarrow coloured bosonic 'diquarks' diquark condensation \rightarrow colour superconductor • phase diagram of QCD: baryochemical potential $\mu \sim$ baryon density. given QCD as dynamics input, calculate resulting thermodynamics, based on QCD partition function #### Ab initio calculation: ⇒ finite temperature/finite density lattice QCD at zero net baryon density ($\mu = 0$, $N_b = N_{\bar{b}}$), finite T lattice QCD with dynamical quarks gives • deconfinement and chiral symmetry restoration coincide, determine critical temperature T_c $$N_f = 2, 2 + 1 : T_c \simeq 175 \text{ MeV}$$ in chiral limit $(m_q \to 0)$. • energy density increases sharply by the latent heat of deconfinement with $$N_f = 2, 2 + 1: \ \epsilon(T_c) \simeq 0.5 - 1.0 \ \mathrm{MeV}$$ for deconfinement energy density. ullet interaction range (from string breaking) drops sharply as $T \to T_c$ \Rightarrow colour screening ## • consequence: charmonium suppression χ_c suppressed essentially at T_c J/ψ survives until 1.5–2.0 T_c NB: equilibrium QCD thermodynamics nature of transition depends on N_f and m_q continuous, first order, cross-over (percolation) structure for $\mu = 0$ at non-zero net baryon density $(\mu \neq 0, N_b > N_{\bar{b}})$, computer algorithms break down, power series... # conjecture for $\mu \neq 0$, $N_f = 2 + 1$ critical point in $T-\mu$ plane depends on position of physical point in $m_s-m_{u,d}$ plane preliminary results $(m_q, \text{ power series}, ...)$ net baryon density fluctuations increase with μ , \rightarrow approach to critical point $\mu_c \simeq 0.3-0.7~{\rm GeV}$ # 3. QCD Transitions in Nuclear Collisions ### **Expectation:** high energy nucleus-nucleus collisions \rightarrow strongly interacting matter multiple collisions \rightarrow thermalization, QGP #### at high energy: nucleon interactions \sim parton interactions ⇒ conditions for thermalization on partonic level? ## prerequisite: ∃ communication ('cross talk', 'colour connection') between partons from different nucleon interactions counterexample: hadron production at LEP consider hadron multiplicity from jet decay of W's - cross talk: - $\Rightarrow N_h(a) < 2N_h(b)$ - no cross talk: $$\Rightarrow N_h(a) = 2N_h(b) \iff$$ **3 LEP expts.** same space-time region, but no cross talk ⇒ pre-equilibrium <u>initial state</u> conditions crucial for <u>final state</u> of high energy nuclear collisions partons in transverse plane of nuclear collision: increasing density \rightarrow superposition \rightarrow clustering percolation: parton cluster spans whole system - ⇒ partonic network, global colour connection - \Rightarrow parton picture breaks down: saturation, classical field \sim colour glass condensate When does that occur? $\frac{\text{percolation in nuclear collisions}}{\text{nuclear overlap area }F}$ $\frac{N}{P} \text{ partons of transverse size } a \ll F$ $\frac{A}{P} \text{ parton density } n = N/F$ \Rightarrow threshold for geometric critical behavior $$n = n_c = 1.13/a$$ defines critical density n_c N/nucleon from PDF's in DIS $N/{ m nuclear}$ interaction from nuclear source density $a \sim 1/k_T^2$ determined by intrinsic k_T of partons $\Rightarrow n_c$ depends on A, centrality, collision energy schematic: central A-A collisions vs. A and \sqrt{s} \Rightarrow onset of percolation best accessible at SPS schematic: Pb-Pb collisions vs.centrality SPS, $\sqrt{s} = 20$ GeV parton network: initial state satisfies prerequisite for thermalization $\frac{\text{necessary}}{\text{necessary}}$, but not necessarily sufficient $\frac{\text{assume}}{\text{assume}}$: parton network thermalizes \rightarrow QGP energy density [Bjorken estimate] $$\epsilon_0 \simeq \frac{p_0}{\pi R_A^2 \tau_0} \left(\frac{dN_h^{AA}}{dy} \right)_{y=0} \simeq \frac{p_0}{\pi \tau_0} A^{0.43} \ln(\sqrt{s}/2)$$ $\Rightarrow \tau_0$: time needed to reach thermalization if partons do not form network, they cannot thermalize, $\tau_0 = \infty$ schematic: central collisions energy density vs. A for $$\sqrt{s} = 20$$ GeV schematic: Pb-Pb collisions energy density vs. centrality for $\sqrt{s}=20$ GeV \Rightarrow hot QGP, well above deconfinement $$(\epsilon(T_c) \simeq 0.5 - 1.0 \text{ GeV/fm}^3)$$ in Pb-Pb at $\sqrt{s}=20$ GeV, formation threshold at mid-centrality ($b \simeq 6$ fm) experimental consequences: \exists sharp variation of observables? $\Rightarrow J/\psi$ suppression vs. centrality, A, \sqrt{s} # critical behaviour from confined (hadronic) side: ⇒ diverging fluctuations ### possible scenario: variation with \sqrt{s} - \rightarrow variation with μ - \rightarrow critical point #### observables: - \Rightarrow net baryon density vs. rapidity, A, \sqrt{s} - \Rightarrow strangeness vs. \sqrt{s} ? # 4. Summary - Critical behaviour, thermodynamic or geometric, implies abrupt change of physical observables. - ullet Statistical QCD o thermodynamic critical behaviour for equilibrium QCD matter. - Parton physics → geometric critical behaviour for pre-equilibrium partons in nuclear collisions. - Onset in both cases accessible best (perhaps only) at SPS.