Critical Behaviour in QCD

Helmut Satz

Universität Bielefeld, Germany and Instituto Superior Técnico, Lisboa, Portugal

CERN SPSC 2004

 ${\bf Villars,\ Switzerland}$

Fundamental Problems of Physics

constituents

forces

quarks leptons gluons, photons vector bosons (Z, W^{\pm}) Higgs

strong
e-m
weak
gravitation
unification, TOE

elementary interactions

complex systems, critical behaviour

states of matter

transitions

solid, liquid, gas, plasma insulator, conductor superconductor, ferromagnet fluid, superfluid glass, gelatine, network

thermal phase transitions percolation transitions scaling, renormalization critical exponents universality classes

Complex Systems \Rightarrow New Direction in Physics

Statistical QCD:

 \exists transition hadronic matter \rightarrow quark-gluon plasma

High Energy Heavy Ion Programme

study in the laboratory

- deconfinement transition
- properties of QGP

Capabilities

- deconfinement transition: SPS, RHIC
- properties of QGP: SPS, RHIC, LHC

Contents

- 1. What is critical behaviour?
- 2. Critical phenomena in QCD
- 3. QCD transitions in nuclear collisions
- 4. Summary

1. What is critical behaviour?

divergent or discontinuous behavior of observables

(natura facit saltum)

example:

magnetization transition in a spin system

Ising model: $s_i = \pm 1 \ \forall i = 1, ..., N$

average spin m(T) in thermodynamic limit $(N \to \infty)$: m(T) is not analytic ('not smooth')

$$m(T) \sim \begin{cases} (T - T_c)^{\beta} > 0 & \forall \ T < T_c \\ 0 & \forall \ T > T_c \end{cases}$$

discontinuous change of m(T) at $T = T_c$:

 \Rightarrow critical exponent β

higher derivatives: susceptibility

$$\chi(T) \sim |T - T_c|^{-\gamma}$$

 \Rightarrow critical exponent γ

and other observables diverge as well, give more critical exponents

critical behaviour of a system fully specified by the set of critical exponents $\alpha, \beta, \gamma, ...$; can be reduced to two independent exponents (universality class)

But why is there singular behaviour?

⇒ spontaneous symmetry breaking

Ising Hamiltonian is invariant under $\uparrow \leftrightarrow \downarrow$ flips at $T = T_c$, state of system spontaneously breaks flip symmetry, chooses either \uparrow or \downarrow .

breaking symmetry is "either-or": you cannot do it "a little" \Rightarrow singular observables

\Rightarrow Thermodynamic Cri<u>tical Behaviour</u> \Leftarrow

- onset of spontaneous symmetry breaking
- singular behaviour of thermodynamic observables*

^{*} divergence : continuous transition discontinuity : first order transition

thermal transitions, critical behaviour: dynamics \rightarrow non-analytic partition function

given constituents with intrinsic scale, ∃ more general form of critical behaviour:

⇒ formation of infinite cluster, network

example: 2-d disk percolation (lilies on a pond)

distribute small disks of area $a = \pi r^2$ randomly on large area $F = L^2$, $L \gg r$, with overlap allowed

for N disks, disk density n = N/F average cluster size S(n) increases with increasing density n

∃ critical density: for

$$n \rightarrow n_c = 1.13/a$$

S(n) spans area $F: S \sim F$

for
$$N \to \infty, F \to \infty$$
:

$$S(n_c)$$
 and $(dS(n)/dn)_{n=n_c}$

diverge: \Rightarrow percolation

probability P(n) that given disk in infinite cluster

$$P(n) \left\{ egin{aligned} &= 0 & \forall \ n < n_c \ \\ &\sim (n-n_c)^{\pmb{\beta}} & \text{for } n \to n_c \text{ from above} \end{aligned} \right.$$

 \Rightarrow order parameter for percolation

average cluster size diverges

$$\tilde{S}(n) \simeq |n - n_c|^{-\gamma}$$

so do other observables: again singular behaviour, as function of density n instead of temperature T

⇒ critical exponents, universality classes

Again, why is there singular behaviour?

⇒ spontaneous global connection
connected or disconnected, not "gradual"

\Rightarrow Geometric Critical Behaviour \Leftarrow

- onset of infinite cluster/network formation
- singular behaviour of geometric observables
- Thermodynamic critical behaviour: spontaneous symmetry breaking as function of T
- Geometric critical behaviour: spontaneous global connection as function of n

geometric critical behaviour can occur even if the partition function is analytic

⇒ geometric without thermodynamic criticality (spin systems in external magnetic field)

2. Critical Behaviour in QCD

What happens to strongly interacting matter at high temperatures and/or densities?

• colour deconfinement

hadronic matter:

colourless constituents of hadronic dimension

quark-gluon plasma: pointlike coloured constituents

• chiral symmetry restoration

hadronic matter:

quarks acquire effective mass $M_q \neq 0$

quark-gluon plasma:

 $M_q \rightarrow m_q = 0$, chiral symmetry restored

• colour superconductivity

deconfined quarks \rightarrow coloured bosonic 'diquarks' diquark condensation \rightarrow colour superconductor

• phase diagram of QCD:

baryochemical potential $\mu \sim$ baryon density.

given QCD as dynamics input, calculate resulting thermodynamics, based on QCD partition function

Ab initio calculation:

⇒ finite temperature/finite density lattice QCD

at zero net baryon density ($\mu = 0$, $N_b = N_{\bar{b}}$), finite T lattice QCD with dynamical quarks gives

• deconfinement and chiral symmetry restoration coincide, determine critical temperature T_c

$$N_f = 2, 2 + 1 : T_c \simeq 175 \text{ MeV}$$

in chiral limit $(m_q \to 0)$.

• energy density increases sharply by the latent heat of deconfinement

with

$$N_f = 2, 2 + 1: \ \epsilon(T_c) \simeq 0.5 - 1.0 \ \mathrm{MeV}$$

for deconfinement energy density.

ullet interaction range (from string breaking) drops sharply as $T \to T_c$

 \Rightarrow colour screening

• consequence: charmonium suppression

 χ_c suppressed essentially at T_c

 J/ψ survives until 1.5–2.0 T_c

NB: equilibrium QCD thermodynamics

nature of transition depends on N_f and m_q

continuous, first order, cross-over (percolation)

structure for $\mu = 0$

at non-zero net baryon density $(\mu \neq 0, N_b > N_{\bar{b}})$, computer algorithms break down, power series...

conjecture for $\mu \neq 0$, $N_f = 2 + 1$

critical point in $T-\mu$ plane depends on position of physical point in $m_s-m_{u,d}$ plane

preliminary results $(m_q, \text{ power series}, ...)$

net baryon density fluctuations increase with μ , \rightarrow approach to critical point $\mu_c \simeq 0.3-0.7~{\rm GeV}$

3. QCD Transitions in Nuclear Collisions

Expectation:

high energy nucleus-nucleus collisions \rightarrow strongly interacting matter

multiple collisions \rightarrow thermalization, QGP

at high energy:

nucleon interactions \sim parton interactions

⇒ conditions for thermalization on partonic level?

prerequisite:

∃ communication ('cross talk', 'colour connection') between partons from different nucleon interactions

counterexample: hadron production at LEP

consider hadron multiplicity from jet decay of W's

- cross talk:
- $\Rightarrow N_h(a) < 2N_h(b)$
- no cross talk:

$$\Rightarrow N_h(a) = 2N_h(b) \iff$$
 3 LEP expts.

same space-time region, but no cross talk

⇒ pre-equilibrium <u>initial state</u> conditions crucial for <u>final state</u> of high energy nuclear collisions partons in transverse plane of nuclear collision:

increasing density \rightarrow superposition \rightarrow clustering percolation: parton cluster spans whole system

- ⇒ partonic network, global colour connection
- \Rightarrow parton picture breaks down: saturation, classical field \sim colour glass condensate

When does that occur? $\frac{\text{percolation in nuclear collisions}}{\text{nuclear overlap area }F}$ $\frac{N}{P} \text{ partons of transverse size } a \ll F$ $\frac{A}{P} \text{ parton density } n = N/F$

 \Rightarrow threshold for geometric critical behavior

$$n = n_c = 1.13/a$$

defines critical density n_c

N/nucleon from PDF's in DIS

 $N/{
m nuclear}$ interaction from nuclear source density $a \sim 1/k_T^2$ determined by intrinsic k_T of partons

 $\Rightarrow n_c$ depends on A, centrality, collision energy

schematic: central A-A collisions vs. A and \sqrt{s}

 \Rightarrow onset of percolation best accessible at SPS

schematic: Pb-Pb collisions vs.centrality SPS, $\sqrt{s} = 20$ GeV

parton network: initial state satisfies prerequisite for thermalization $\frac{\text{necessary}}{\text{necessary}}$, but not necessarily sufficient $\frac{\text{assume}}{\text{assume}}$: parton network thermalizes \rightarrow QGP

energy density [Bjorken estimate]

$$\epsilon_0 \simeq \frac{p_0}{\pi R_A^2 \tau_0} \left(\frac{dN_h^{AA}}{dy} \right)_{y=0} \simeq \frac{p_0}{\pi \tau_0} A^{0.43} \ln(\sqrt{s}/2)$$

 $\Rightarrow \tau_0$: time needed to reach thermalization if partons do not form network, they cannot thermalize, $\tau_0 = \infty$

schematic: central collisions energy density

vs. A for
$$\sqrt{s} = 20$$
 GeV

schematic: Pb-Pb collisions energy density vs. centrality for $\sqrt{s}=20$ GeV

 \Rightarrow hot QGP, well above deconfinement

$$(\epsilon(T_c) \simeq 0.5 - 1.0 \text{ GeV/fm}^3)$$

in Pb-Pb at $\sqrt{s}=20$ GeV,

formation threshold at mid-centrality ($b \simeq 6$ fm)

experimental consequences:

 \exists sharp variation of observables?

 $\Rightarrow J/\psi$ suppression vs. centrality, A, \sqrt{s}

critical behaviour from confined (hadronic) side: ⇒ diverging fluctuations

possible scenario:

variation with \sqrt{s}

- \rightarrow variation with μ
- \rightarrow critical point

observables:

- \Rightarrow net baryon density vs. rapidity, A, \sqrt{s}
- \Rightarrow strangeness vs. \sqrt{s} ?

4. Summary

- Critical behaviour, thermodynamic or geometric, implies abrupt change of physical observables.
- ullet Statistical QCD o thermodynamic critical behaviour for equilibrium QCD matter.
- Parton physics → geometric critical behaviour for pre-equilibrium partons in nuclear collisions.
- Onset in both cases accessible best (perhaps only) at SPS.