The kaon physics programme outside CERN

L. Littenberg - BNL

Villars sur Ollon 26 Sept 2004

Closeup of excluded area

IHEP

- Present: a couple of experiments with unseparated K beams
 - precision studies of common modes + medium rare decays
- Future: OKA
 - separated beam 5×10^6 12-18 GeV/c K⁺, 75% pure
 - spectrometer, partID, lead glass, μ-ID, etc.
 - few \times 10⁻¹¹/event sensitivity
 - high-precision studies of common to medium-rare decays

I he KLUE experiment at DAФNE

Be beam pipe (0.5 mm thick) **Instr. permanent magnet quads**

Drift chamber $(4 \text{ m } \varnothing \times 3.3 \text{ m})$

Scifi electromagnetic calorimeter

Superconducting coil (5 m bore) $B = 0.52 \text{ T} (\circlearrowleft B dl = 2 \text{ T·m})$

Present: Precision studies of common modes; K_S , K^{\pm} sensitivity @ 10^{-7} level

Future: 5 × more sensitivity by end 2005. Another factor 100 with DAΦNE upgrade (by 2011 or 12?)

AGS/RHIC Accelerator

Complex

AGS Experimental Hall

Fermilab Accelerator Complex

FNAL Fixed Target Experimental

原子核素粒子実験室 Nuclear and Particle Physics Experimental Hall 物質・生命科学実験施設 Materials and Life Science Facility 3 GeVシンクロトロン 3GeV Synchrotron 50 GeVシンクロトロン 50GeV Synchrotron ュートリノ実験施設 Neutrino Facility Linac 核変換実験施設 Accelerator-Driven Transmutation Experimental Facility

J-PARC

J-PARC Hadron Hall

Comparison of Facilities

Facility	AGS	KEK	J-PARC	FNAL MI
P _{proton}	228	12	30-50	90-120
p/cycle (TP)	65100	2	100200	30
cycle time (s)	3-10	4	3.4-5.6	2.9-4
spill length (s)	1-7	2	0.75-3	1-2
duty factor	up to ~0.70	0.50	.2253	.3350
K utilization factor	0.8/0.4	0.3	0.3	0.40
Share with	RHIC/MECO	ν	ν	collider,v

Beyond the Standard Model

- A number of dedicated BSM experiments (mainly LFV) ran for a decade starting in the late 1980's
- BSM limits also produced by other experiments of the period
- Very impressive limits set (BRs as low as 4.7×10^{-12})
- But theoretical impetus ran dry
- Now a few results still trickling out, but almost no new initiatives on the horizon (one exception)
- Results were at or near background limit
- Should new experiments be considered?
 - Some theorists think it interesting
 - Advances in beams/detectors could make possible further progress.

90% CL upper limits on non-SM Decays

90% CL upper limits on non-SM Decays

Rare K decay & the Unitarity Triangle

$K_L \rightarrow \pi^0 v \bar{v}$ Experimental Issues

- All-neutral initial & final state, γ 's make π^0
- Expected BR $\sim 3 \times 10^{-11}$
 - need high flux of K_L
- Largest background K_L→π⁰ π⁰, BR ~ 10⁻³
 - need excellent vetoes, other handles if possible
- Background from n-produced π^0 's, η 's
 - need 10⁻⁷ Torr vacuum
 - need a way to be sure decay vertex was in the beam

E391a detector system

E391a status & prospects

- First physics run Feb-June this year
 - -2.2×10^{12} 12 GeV \square POT, 50% duty factor
 - $-5 \times 10^5 \, \text{K}_{\text{L}}/\text{pulse}$
 - Detector worked well
 - Nominal s.e.s. 4×10^{-10}
 - Analysis underway
 - first sight of the enemy
 - Halo neutrons, self-vetoing, etc.
- Second run proposed for next year

KEK-PS to J-PARC

Thicker photon vetoes

Deeper, more granular crystals

Faster electronics

$K_L \rightarrow \pi^0 v v^- Experiment$

$K_L \rightarrow \pi^0 v v^- Experiment$

In the K_LCoM

KOPIO $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Experiment

BNL AGS experiment

Aim: to get >40 evts with S:B \sim 2:1

Use the AGS between RHIC fills

Capitalize on the experience of previous AGS rare K decay experiments

KOPIO Concept

Detect π⁰ and nothing

 $\rightarrow 2\gamma$ \rightarrow veto

Measure everything possible

- K_L TOF: to work in K_L CMS
 - μbunch AGS protons
 - Large angle (soft) beam
 - Asymmetric beam profile
 - 2 γ detection, timing of K_L
- Reconstruct π^0 decay from $\gamma \gamma$
 - Measure γ directions & positions measured in PR
 - Measure γ energy in PR+CAL
- Veto : cover 4 π solid angle
 - Photon veto
 - Charged particle veto

KOPIO Requirements

- 100 TP/AGS pulse (requires upgrade from 70TP)
- 250 ps μbunch width, every 40 ns, with <10⁻³ between bunches
- Beamline at 42.5°, 100 mr × 5mr, halo ≤10⁻⁴
 - Gives 3×10^8 K_L/spill, (12% decay), but $100 \times$ more n's)
- γ timing commensurate with bunching
- γ veto inefficiency of ~ 10⁻⁴, ~ **10**⁻³ in beam
- γ energy resolution of ~3%/ \sqrt{E}
- γ angular resolution of ~ 30mr
- Charged particle inefficiencies ≤10⁻⁴

Microbunched Beam

- Based on CERN technique
 - Used for smoothing beam
 - Cappi & Steinbach 1981
- Achieved 244ps µbunch rms with 93MHz cavity
- Recent tests with main AGS cavities showed extinction of $\sim 10^{-5}$
- 25 MHz cavity in design
 - based on RHIC 28 MHz

Micro-bunched slow extraction

Preradiator

2 X_0 alternating DC & scint. planes $4m \times 4m$ (four quadrants) 200,000 channels

Shashlyk Calorimeter

- 2500 11cm² modules, 16 X₀ deep
- Pmt or APD readout
- Prototype tests have achieved
 - Energy resolution ~ 3%/ √E

HIGH RESOLUTION "SHAHLYK"

KOPIO Charged Particle Veto

 Thin scintillator directly read out by pmts in vacuum

Tests of achievable inefficiency at PSI =

Note γ vetoes back up CPV

Prototype tests at PSI

KOPIO Beam Catcher Veto

- Photon veto which covers beam core region
- in fierce □ neutron rate
- Needs to be...
 - efficient for γ rays
 - insensitive to neutrons
- Aerogel Cherenkov + distributed geometry
- Prototypes tested in $\gamma \square \& p$ beams:

Status of KOPIO

- RSVP approved all the way up the NSB
- Received \$6M in R&D funds in FY04
- In the President's FY05 budget for \$30M
- In the House Appr. Sub-committee markup
- Waiting for Congress to complete its process
- All requirements shown to be met by prototype tests or performance of other experiments (e.g. E949).
- In late stage R&D, initial engineering
- Still seeking collaborators!

Experimental considerations for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- 3-body decay, only 1 visible
- π^+ common K decay product
- BR ~ few × 10⁻¹¹
- Backgrounds:
 - $K^+ \rightarrow \mu^+ \nu(\gamma)$
 - $K^+ \rightarrow \pi^+ \pi^0$
 - Beam
 - Beam π⁺ mis-ID as K⁺, then fakes K decay at rest
 - K⁺ decay in flight
 - 2 beam particles
 - K⁺n→K⁰p; K_L → π ⁺ ℓ ⁻ν, lepton missed

E787/949 Detector

E787/949 Technique

E787 Events

Candidate E787A

Candidate E787C

E787 Results

	PNN1	PNN2
P _π (MeV/c)	[211,229]	[140,195]
Years	1995-98	1996-97
Stopped K ⁺	5.9×10 ¹²	1.7×10 ¹²
Candidates	2	1
Background	0.15±0.05	1.22±0.24
$BR(K^{\scriptscriptstyle{+}}\!\!\to\pi^{\scriptscriptstyle{+}}vv)$	$(1.57^{+1.75}_{-0.82}) \times 10^{-10}$	< 22×10 ⁻¹⁰ (90% CL)

$E787 \rightarrow E949$

- & Enhanced γ veto, beam instrumentation
- ♦ Much higher proton flux (65 TP)
- Improved tracking and energy resolution
- higher rate capability due to DAQ, electronics and trigger improvements
- ♥ Lower beam duty factor (Siemans → Westinghouse)
- ◊ Lower proton energy (by 10%, cost 10% in flux)
- \P Problematic separators, worse K/π ratio (4 →3), fewer K/proton (factor ~1.5)
- Total cost, factor 2

Upgrades in E949

 μ^+ Momentum from $K^+ \rightarrow \mu^+ \nu$

 $\times 2$ -10 better π^0 efficiency

Improved UTC σ_Z

Range Stack Straw Chamber tracking Improved by 5 x

Combined E787/949 Result

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$$

(68% CL interval)

E787 result:

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.57^{+1.75}_{-0.82}) \times 10^{-10}$$

	E787		E949
Stopped K ⁺ (N_K)	$5.9 imes 10^{12}$		1.8×10^{12}
Total Acceptance	0.0020 ± 0.0002		0.0022 ± 0.0002
S.E.S.	0.8×10^{-10}		2.6×10^{-10}
Total Background	0.14 ± 0.05		0.30 ± 0.03
Candidate	E787A	E787C	E949A
S_i/b_i	50	7	0.9
$W_i \equiv \frac{S_i}{S_i + b_i}$	0.98	0.88	0.48

pnn2

- Acceptance larger than for pnn1 (in principle)
- E787 bkgnd-limited at ~10^{-g}, another factor 10 needed to get to S:B ~ 1
- Main background from Kπ2 w/nasty correlation
- Improved photon vetoing in E949 very encouraging.
- Answer expected in a few months.

Status & prospects for

94949 detector worked well

- Obtained ~2/3 sensitivity of E787 in 12 weeks (1/3 pnn1+1/3 pnn2)
- Found one new pnn1 candidate
- pnn2 analysis currently in progress
- looks promising
- AGS & beamline problems cost a factor ~2 in sensitivity/hour
- DOE cut off experiment after 12 of 60 promised weeks
- Currently seeking NSF support

J-PARC K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ LOI

- Stopped K⁺ experiment
- Builds on E787/949 experience
 - Lower energy separated beam
 - Higher B spectrometer
 - More compact apparatus
 - Better resolution
 - Finer segmentation
 - Improved γ veto (crystal barrel)
- Aims for 50 events
- Not an early experiment for J-PARC
 - Needs beamline
 - place on the floor
 - \$ for detector

Pros & cons of stopped-K technique

- PROs
 - Long history
 - The enemies are known
 - Well-honed methods
 - S/B good enough!
 - Effective particle ID
 - Easy to be hermetic
 - Very pure beam
 - In CM right away
 - Clean separation of kinematics/part-ID

CONs

- Decay in matter
 - Nuclear effects
- Require π 's to stop
- ID sensitive to rates
- 3 timescales (up to μ s)
- Need low veto thresholds
- Limited K flux
 - Most K's interact (typ 4/5)
- Correlation of detector geometry w/CM system

Fermilab in-flight initiative

- Unseparated beam
 - 10MHz K+/230MHz
 - $-1cm \times 1cm$
 - 37-53 GeV/c
 - 17% decay
- K & π spectrometers
- RICH particle ID
- μ & γ vetoes
 - $-10^{-6}/\gamma$
- pnn1 & pnn2
- 100 evts/2 years/10⁻¹⁰
- Hope to run by 2009

How to pursue $K^+ \rightarrow \pi^+ \nu \bar{\nu}$?

- In-flight has the "appeal of the new"
 - The only way to get >100 events
 - But requires 11 O.M. leap!
 - Watch out for tails, acceptance losses, the unexpected
- Stopping experiment very well understood
 - Technique shown to have sufficient S/B
 - Any further improvements can increase acceptance
 - Note acceptance of 787/949 is ~0.002
 - Plenty of room for improvement!
 - Could *really know* if 50-100 events possible

World enough & time for _

$$K_L \rightarrow \pi^0 \ell^+ \ell^-$$

In SM, gives the same info as $K_L \rightarrow \pi^0 \nu \overline{\nu}$

KTeV obtains 90% CL upper limits

$$B(K_L \to \pi^0 e^+ e^-) < 2.8 \times 10^{-10}$$

$$B(K_L \to \pi^0 \mu^+ \mu^-) < 3.8 \times 10^{-10}$$
 (so far)

- already see background from $K_L \rightarrow \gamma \gamma \ell^+ \ell^-$ at level 10× SM

This, + complicated interplay of CP-conserving & state-mixing contributions tends to discourage people.

But recent experimental and theoretical '97 progress here.

New mindset may be justified!

 $K_L \rightarrow \pi^0 \mu^+ \mu^-$

$$K_L \rightarrow \mu^+ \mu^-$$

- $B_{SD}(K_L \rightarrow \mu^+ \mu^-) \propto (\overline{\rho}^0 \overline{\rho})^2$
- Potentially good source of info on $\overline{\rho}$
- Also possible BSM contributions
- Clean experimental result with 6000 evts

- But BR dominated by abs contrib:
 - >5× larger than SD
 - can be measured from $K_L \rightarrow \gamma \gamma$
 - uncertainty > that on $K_L \rightarrow \mu^+ \mu^-$) meas.
- Subtraction can be addressed by other BR meas.
- But LD dispersive contribution of similar size to SD
 - interferes with SD
 - can get information from $K_L \rightarrow \ell^- \ell^+ \gamma$, etc.
 - good progress, **but** would need 1000 × KTeV to go further
 - in the hands of theorists
- Better precision would be hard to get.

Do we need multiple experiments?

If we can't get a 4×10^{-1} BR PDG 02 **KTEV** right to 5% 0.39 0.38 0.4 0.41 $B(K_I \rightarrow \pi e \nu)$ • & we can't get a 2×10^{-1} PDG 02 BR right to 8% 0.2 0.21 0.19 $B(K_1 \rightarrow 3\pi^0)$

• Are we really going to get a few × 10⁻¹¹ BR right to 10% the first time?

Conclusions

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ seen, BR 2^{ce} SM, but consistent with it
 - Could go at least 10× further with same technique
 - Initiative to go 100× further with in-flight technique
- $K_L \rightarrow \pi^0 v \overline{v}$ experiment aiming to w/i factor 10 of SM level, w/i some BSM predictions
 - Two initiatives to go >100× further
- Situation rife with uncertainty!
 - J-PARC accelerator will be there, but experiments?
 - Is FNAL really in the game?
 - − BNL K⁺→ π ⁺ $\nu \overline{\nu}$ experiment stalled by DOE, future unclear
 - BNL $K_L \rightarrow \pi^0 v \overline{v}$ experiment probably has best prospects but not guaranteed (US Senate not helpful)

Gratuitous Advice

- Don't worry too much about what others will or won't do.
- If you are going to do it, don't scrimp!
- Allow enough running time (years) for development, mid-course corrections, upgrades, and learning as you go.