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Extra Low Energy Antiproton Ring (ELENA) 
for antiproton deceleration after the AD

Pavel Belochitskii for the AD team
On behalf of the AD users community
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Beam from AD: 3 107 antiprotons per cycle at energy 5.3 MeV

with transverse emittances 1 to 2 π mm mrad.
How antiprotons are decelerated further today:
• Experiments with antihydrogen program (ATHENA and 

ATRAP) use degraders to slow 5.3 MeV beam further down: 
poor efficiency due to adiabatic blow up and due to scattering 
in degrader. 

• ASACUSA uses RFQD for antiproton deceleration down to 
around 100 keV kinetic energy.  Due to absence of cooling 
beam deceleration in RFQD is accompanied by adiabatic blow 
up (factor 7 in each plane) which causes significant reduction 
in trapping efficiency.
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How do we gain in intensity with extra deceleration 
and cooling ?

• Small ring to decelerate antiproton beam down to 100 keV and 
cool by electron beam to high density will be used

• Emittances of beam passing through a degrader will be much 
smaller than now due to electron cooling and a much thinner 
degrader (100 keV beam instead of 5.3 MeV)  => two orders 
of magnitude gain in intensity is expected for ATHENA and 
ATRAP.

• Due to cooling, beam emittances after deceleration in ELENA 
will be much smaller than after RFQD => one order of 
magnitude gain in intensity is expected for ASACUSA.

• Kinetic energy 100 keV is close to optimal both from the point 
of view of beam intensity, momentum spread and separation of 
transfer line and trap vacuum. 
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Requirements to ELENA:

• Compact machine* located inside of AD Hall with minimum 
of reshuffle.

• Energy range from 5.3 MeV (AD extraction energy) down to 
100 keV.

• Equipped with electron cooler to make beam phase space 
smaller in about two orders of magnitude with respect what we 
have today

• Machine assembling and commissioning has to be done 
without disturbing current AD operation.

*  A similar ring for decelerating antiprotons from LEAR was 
proposed by H.Herr in 1982.
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Requirements to ring configuration:

• One long straight section for electron cooler.
• One long straight section for beam injection and extraction.
• One or two straight sections for other equipment (RF, 

diagnostics etc.)

Electron cooler for ELENA:
• 1 m cooling length. 
• Careful electron cooler design which provides low transverse 

temperatures of electron beam at very low energies needed for 
fast cooling.
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ELENA schematic layout
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Lattice considerations:

• Beam focusing is achieved by proper choice of edge angle of 
the dipoles. Economical solution for saving cost and space: 
neither gradient magnets, nor quadrupoles needed!

• Big area in tune diagram should be available for tune 
excursion caused by space charge. Conservative estimate for 
coherent tune shift ∆Q= 0.10 was accepted which is based on 
CERN Booster, PS and AD experience.

• Tunes Qx=1.45, Qy=1.43 (with similar non-integer parts as in 
the AD) fit requirements.

• Choice of tunes together with required straight section length 
defines machine circumference about 22m.
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Intensity limitation due to space charge

The incoherent tune shift

Here εx,y is beam emittance, Nb is a number of particles in a 
bunch, β and γ are relativistic factors, Bb is bunching 
factor given by the ratio of bunch length and machine 
circumference. 

The limitation is more severe:
• At low energies
• For bunched beam
• For a machine with big circumference in the case when 

the bunch length is fixed by other constraints (e.g. trap 
experiments)
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Intensity limitation due to space charge (continued)

Examples:
• AD case, 3 107 antiprotons in extracted beam, bunched beam 

100 ns long,  εx,y=1 π mm mrad => ∆Qx,y=-0.073.
• ELENA case, 1.5 107 antiprotons at the end of deceleration 

(50% deceleration efficiency assumed), bunched beam 
occupies 1/3 of ring circumference,  εx,y=10 π mm mrad => 
∆Qx,y=-0.01 => no problems during deceleration.

• ELENA case, 1.5 107 antiprotons in extracted beam,  bunched 
beam 300 ns long,  εx,y=5 π mm mrad => ∆Qx,y=-0.10  => 
our choice of beam parameters at 100 keV.
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How we define limit on tune excursion?

• MD studies in AD for investigation 
of the beam stable area in tune 
diagram.

• Machine is stable when tunes are
inside of polygon. Beam is lost 
when tunes approach 5.5
(2nd order resonance) and 5.33
(3rd order resonance).
CERN Booster experience: tune excursion of 0.4 is 
possible for a short time with careful compensation 
resonance driving terms. CERN PS experience: tune 
excursion of 0.2 is possible with similar precautions.
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Lifetime considerations:

• Intrabeam scattering (IBS) is important at very low energies in 
a short bunch with small emittances. With reasonable choice 
of beam parameters (1.5 107 particles, emittances 5π mm mrad
and ∆p/p=10-3) emittance rising times for coasting beam are 
more than 1 minute. For bunched beam 1.3m long they are of 
order of 1 second.

• Residual gas scattering produces beam blow up 0.5π mm 
mrad/s at energy 100 keV and pressure 3 10-12 Torr.

• electron cooling at 100 keV will be strong enough to fight 
successfully with intrabeam and residual gas scattering.

• for fast extraction, the beam blow up is limited by the time of 
beam bunching and bunch rotation (if needed), which takes 
few hundreds msec.
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ELENA main parameters

1.5 105Average antiproton flux, 1/sec

5 / 5Emittances at 100 keV, π mm mrad

1.1 / -9.1 / 0.85IBS blow up times for bunched beam* 
(εx,y=5π mm mrad, ∆p/p=1 10-3), s 

* No electron cooling is assumed

3 10-12Required vacuum* for ∆ε=0.5π mm 
mrad/s,Torr 

1.3 / 300Bunch length at 100 keV, m / ns
0.10Maximal incoherent tune shift

1.3 107Intensity limitation by space charge

1.45 / 1.43Working point
21.9Circumference, m

5.3 – 0.1Energy, MeV
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Schematic view of ELENA cycle

• No electron cooling is performed at injection energy: beam is 
cooled already in AD. After injection beam is decelerated 
immediately.

• One intermediate cooling (at 40 MeV/c probably) is needed to 
avoid beam losses 
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AD Hall with ELENA
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ELENA layout in AD Hall
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What has to be done to locate ELENA in AD Hall:
• Shielding rearrangement.
• Water distribution circuits rearrangement.
• One of the barracks on the ground floor has to be moved.
• Small part of ASACUSA experimental area needed (no real 

problems for physicists are created).
• Part of injection line between BMZ8000 and ELENA must be 

prepared, including 2 or 3 quadrupoles for matching lattice 
functions and beam position diagnostics.

• Bending magnet BMZ8000 (may be) needs some clockwise 
rotation to bend beam from AD ejection line to ELENA 
injection line.

• Weak bending magnet in ELENA ejection line needed. It 
brings beam back to existing transfer line.
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Conclusions

• A small machine for decelerations and cooling of antiprotons 
after AD to lower energies around 100 keV is feasible.

• One to two orders of magnitude more antiprotons can be 
available for physics.

• Main challenges for the low energy decelerator like ultra low 
vacuum, beam diagnostics and effective electron cooling can 
be solved, using experience of AD and member-state 
laboratories where similar low energy ion machines are 
operational (ASTRID, Aarhus; CRYring, Stockholm).

• The machine can be located inside of the AD Hall with only 
minor modifications and reshuffling of the present installation.

• Machine assembling and commissioning can be done without 
disturbing current AD operation.


