

Project ALPHA

Antihydrogen Laser PHysics Apparatus

University of Aarhus: P.D. Bowe, N. Madsen, A.-M. Ejsing, J.S. Hangst

University of California, Berkeley: W. Bertsche, J. Fajans

University of Liverpool: A. Boston, P. Nolan, M. Chartier

Riken:

Thanks to CERN AD Staff!

Federal

University of Tokyo: R. Funakoshi, L.G.C. Posada, R.S. Hayano

TRIUMF: K. Ochanski, M.C. Fujiwara

University of Wales, Swansea: L. V. Jørgensen, D.P. van der Werf, D.R.J. Mitchard,

H.H. Telle, M. Jenkins, A. Variola*, M. Charlton

* current address: Laboratoire de L'Accelerateur Lineaire; Orsay

O

ALPHA "ROADMAP"

First Production

Steps Along on the Way

 $2003 \Rightarrow ?$

Quantum State Manipulations Laser induced formation

• First laser-antiatom interactions

Precision

Spectroscor

- e+ temperature measurement
- 3-body plasma effects

attempt 2006 sufficient quantities 3-5 years?

Stable Trapping

Non-neutral plasma stability studies

- Resonant particle transport
- Trapped particle modes
- Quadrupole vs. multipole effect

Strengths and Expertise

- World's strongest cold e+ source
- Precision and high-power lasers
- Non-neutral plasmas
- Comprehensive detector capability
- Hydrogen trapping and spectroscopy

Aarhus, Berkeley, Liverpool, Rio, RIKEN, Swansea, Tokyo, TRIUMF

1s-2s spectroscopy

• anything imaginable

~ 2009

Planck Scale Physics
CPT Violation
Gravity

This worked. What Happens Next?

Insert here:

A new purpose-built system for antihydrogen trapping and spectroscopy

O

Philosophy & Strategy

- The original vision of the AD program conducting tests of CPT symmetry based on antihydrogen spectroscopy remains our unique focus
- We believe that it is essential to trap antihydrogen atoms in order to
- We need access to antiprotons again as soon as possible (hopefully more of them, Pavel)
- Antihydrogen formation cannot be simulated offline
- ahunyaragen. mixeu piasmas ar eryageme constituents with passible laser enhancement
- Trapping is the main goal: investments and design considerations for the new apparatus will prioritize the trapping hardware
- Offline trapping studies based on variable-field, superconducting, multipole magnets are essential for making design decisions for the new apparatus. These are underway.

Trapping Neutral Anti-atoms

Aside: high n-states could have higher μ

$$\vec{B}_Q = gr\sin(2\theta)\hat{r} + gr\cos(2\theta)\hat{\theta} = gy\hat{x} + gx\hat{y}$$

Solenoid field is the minimum in B

Can we superpose this on a nested trap?

O

Quadrupole Questions

• What is the necessary field strength?

$$\Delta B = \sqrt{(B_z^2 + B_Q^2(r_t)) - B_z}$$

e.g. $B_z = 3T$; trap radius 1 cm; desired well depth 1T

Quad gradient = 265 T/m! (LHC 213 T/m @ 1.9 K)

- ⇒ favors small solenoid fields; pbar capture and cyclotron cooling favor high solenoid field; may need a *rampable* superconducting solenoid
- \Rightarrow need quad coils as close as possible to trap wall
- Do particles follow the field lines?
- Will the plasmas just disappear at the necessary field strengths?

E.P. Gilson and J. Fajans, PRL 90, 015001 (2003)

T. Squires et al., PRL 86, 5266 (2001)

- If they don't initially disappear, can they be mixed without disappearing?
- If they are mixed, is the density of overlap high enough to make H-bar?

Field Lines with Quadrupole

Rotational symmetry broken: is there a plasma equilibrium?

Note: if antihydrogen production is 3-body; positron collisions are important: single particle stability not the relevant criterion

UC Berkeley: experimental (J. Fajans) and theoretical (J. Wurtele) studies

Experiments at Berkeley

Superconducting solenoid B_{max}= 8T

Superconducting quadrupole g_{max}= 40 T/m

Electron plasmas $N \sim 10^8$; cryogenic temperature

Study lifetimes for different B, g; effect of ramping quad field; harmonic and square wells

Resonant effects believed to be important: must vary field

 \Rightarrow Scaling laws for lifetime: F(B,g)

M. Berkeley Superconducting Quadrupole

Gradient 40 T/m; length 36 cm

Berkeley Experiment

Thanks to Michael Holzsheiter/Martin Shauer/LANL

Berkeley Experiment

OL

Plan B: Multipole Confinement

$$B_{s} = B_{w} \left(\frac{r}{r_{w}} \right)^{s-1}$$

- •Maximum field (well depth) determined by current at wall: independent of order
- •Less perturbation of plasmas near r=0
- •Tradeoff between tight radial confinement and plasma perturbation determines optimum multipole order
- •May need multipole + *rampable* quadrupole for laser physics

A. Schmidt and J. Fajans, NIMA 521, 318-325 (2004)

Quad vs. multipole (s=6)

Kurchatov-Berkeley Magnet

- 3 T, warm bore 26 cm diameter
- homogeneous region (10⁻³) 100mm diameter, 600 mm long

Concerns:

•Solenoid/multipole interaction forces can be huge

$$\vec{F} = \int (\vec{J} \times \vec{B}) dV$$

•May want to ramp this and multipole

Laser Stimulated Combination

Inspired by A. Wolf 1993

Measure production rate vs.

frequency

1st step: tunable ¹³C¹⁸O₂ laser (50W)

1st resonant frequency depends on e+

temperature

Realistic estimate: ~60 Hz

Tightly-bound quantum state

Current Set-up in ATHENA Laser Lab

Laser Stimulated Combination

Trying now in ATHENA apparatus

Valuable experience with high-power laser in cryo system

Refine for ALPHA apparatus

Build-up cavity for more power; saturate larger spatial region

Positron Improvements

O

Detection

- •Need to confirm and optimize production w/o trapping fields
- •Need to confirm and optimize production w/ trapping fields
- •Need to verify trapping: probably by release of trapping fields
- •For state-of-the-art multipoles, coil and support structure serious impediments to vertex detection (multiple scattering)
- •ATHENA vertex reconstruction (~ 4mm resolution) based on straight-line fits to curved trajectories in solenoid field without momentum information; multipole fields are maximum at trap wall where vertices lie
- •GEANT 4 Monte Carlo (Tokyo group) being used to study these issues
- •Retain vertex detection if possible; avoid cryogenic detector if at all possible
- •Liverpool will lead detector development for ALPHA
- •ATRAP field ionization detection could be very useful initially

Y Precision Spectroscopy - Still the Goal

"Hänsch Plot"

Once antihydrogen has been trapped, any type of precision measurement can be contemplated

Antihydrogen

Hydrogen

- High precision in matter sector
- test of CPT theorem

Hydrogen Reference Cell (Rio)

Buffer Gas Loading (Doyle Trap)

Trap hydrogen at 1.3 K by laser ablation; He buffer gas cooling Evaporative cooling to sub-Kelvin temperatures for precision spectroscopy Frequency reference for Hbar comparison

Rio Buffer Gas Trap

OL

Development at CERN

- Cryo tests: e.g. cryostat with warm magnet bore
- Vacuum & cryo tests: laser windows, etc.
- New trap construction techniques: need $r_m \sim r_t$
- Large positron plasmas for more tightly bound Hbar
- Laser development: 1s-2s stabilized to 1 kHz, CO₂ laser (power buildup, different isotopic mixtures)
- Hydrogen source for laser development

Development Flow Chart

Summary

CALPHA is:

- α a new collaboration having all of the necessary expertise and resources to realize the goals of antihydrogen trapping and spectroscopy
- α dedicated to starting physics again when the AD program resumes in 2006
- α anxious to get on with it

