Soft and Hard Hadrons

Hard QCD, the Standard Model and Beyond

Mike Seymour CERN/Manchester SPSC meeting on Fixed Target Programme Villars, Switzerland September 24th 2004

Soft and Hard Hadrons

- pQCD, SM and BSM Physics Mike Seymour
 - Parton Distribution Functions
 - Electroweak measurements
 - Charged Lepton Flavour Changing Neutral Currents
- Hard exclusive processes Markus Diehl
 - Generalized Parton Distribution Functions
- Low energy QCD and spectroscopy Maxim Polyakov

pQCD, SM and BSM Physics

Parton Distribution Functions

- Kinematic coverage
- Structure functions at large $x \rightarrow$ valence quarks
- Drell–Yan at large $x \rightarrow sea$ quarks
- strange quarks at large $x \rightarrow$ strange asymmetry?
- charm near threshold \rightarrow charm mass?
- Electroweak measurements
 - $\sin^2 \theta_w$ from NC/CC ratio
- Charged Lepton Flavour Changing Neutral Currents
 - $\mu \rightarrow e \gamma$
 - $\mu {+} N {\rightarrow} \tau {+} X$
- Other Miscellanea
 - Pion structure functions
 - Minimum bias/underlying event measurements

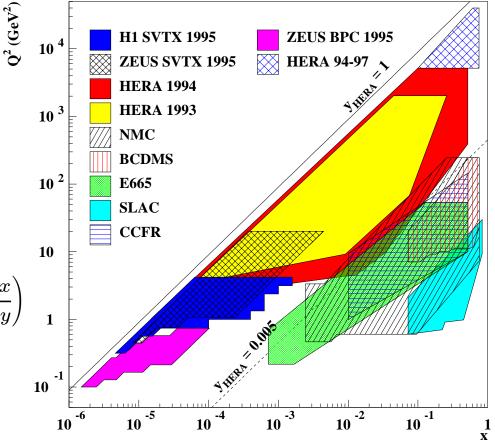
pQCD, SM and BSM

Mike Seymour

Rationale

- What can be done with
 - a proton beam of $\sim 400 \text{ GeV}$
 - a muon beam of $\sim 100 \text{ GeV}$
 - and event samples \sim 10 times present ?
- Will focus on the physics we would like to do
- not whether it is feasible...

Parton Distribution Functions


Cross section for deep inelastic scattering:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1+(1-y)^2)F_2(x,Q^2) \\ -y^2F_L(x,Q^2) \Big]$$

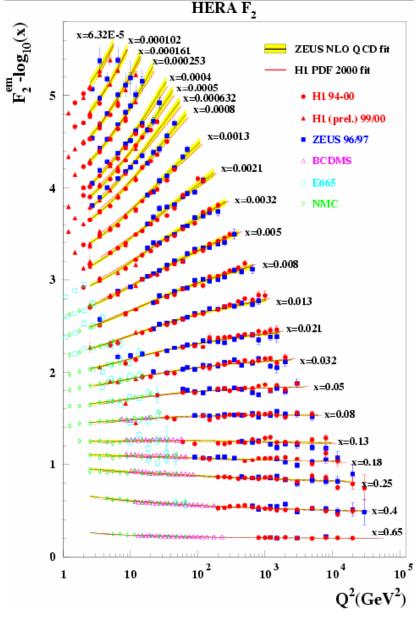
- Parton model: $F_2(x,Q^2) = \sum_{\alpha} e_q^2 x f_q(x)$
- Collinear factorization: Q^2 -dep.
- DGLAP evolution:

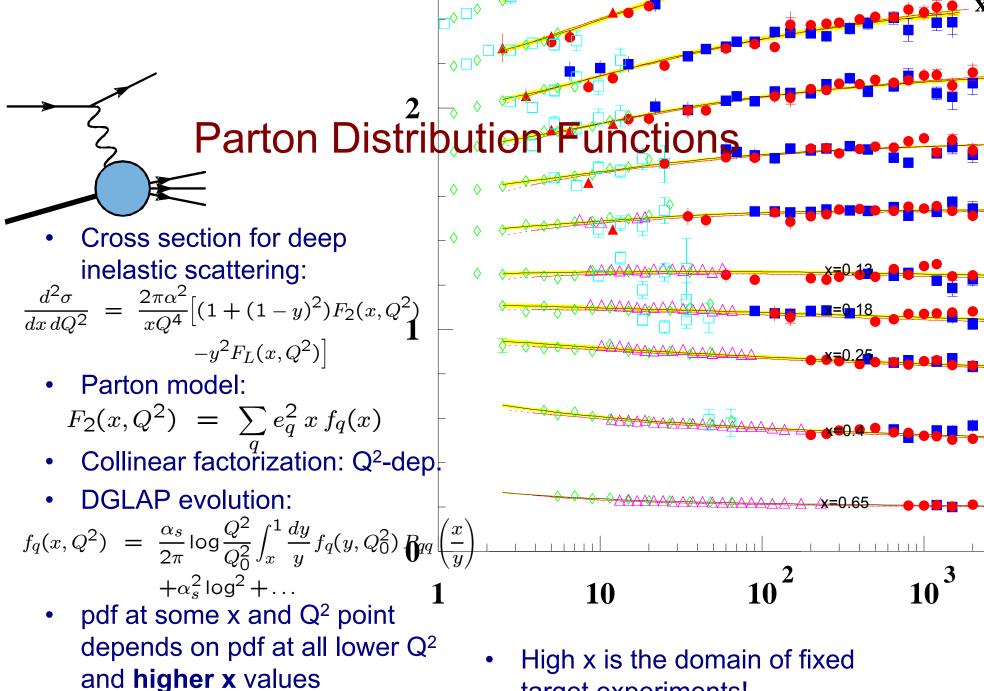
$$f_q(x,Q^2) = \frac{\alpha_s}{2\pi} \log \frac{Q^2}{Q_0^2} \int_x^1 \frac{dy}{y} f_q(y,Q_0^2) P_{qq}\left(\frac{x}{y}\right) + \alpha_s^2 \log^2 \int \int + \dots$$

 pdf at some x and Q² point depends on pdf at all lower Q² and higher x values

Parton Distribution Functions

Mike Seymour


• Cross section for deep inelastic scattering:

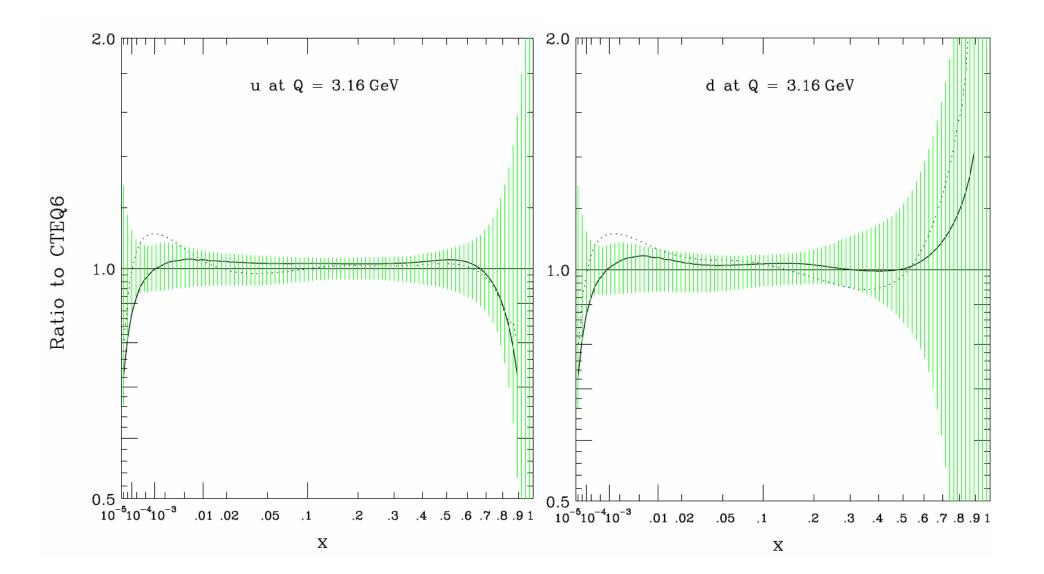

 $\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1+(1-y)^2)F_2(x,Q^2) \\ -y^2F_L(x,Q^2) \Big]$

- Parton model: $F_2(x,Q^2) = \sum_{x} e_q^2 x f_q(x)$
- Collinear factorization: Q^2 -dep.
- DGLAP evolution:

$$f_q(x,Q^2) = \frac{\alpha_s}{2\pi} \log \frac{Q^2}{Q_0^2} \int_x^1 \frac{dy}{y} f_q(y,Q_0^2) P_{qq}\left(\frac{x}{y}\right)$$
$$+ \alpha_s^2 \log^2 + \dots$$

 pdf at some x and Q² point depends on pdf at all lower Q² and higher x values

target experiments!


Global Fits

- State of the art: NLO cross sections with NLO evolution
 - Deep Inelastic Scattering (NNLO starting to be used)
 - electron/positron/neutrino/antineutrino
 - neutral current/charged current
 - proton/deuterium/nuclear targets
 - charm-tagged final states
 - Drell-Yan production (hh \rightarrow ll+X)
 - fixed target (virtual photon)
 - W/Z production and forward/backward asymmetry
 - Tevatron high– E_T jet data
 - rapidity-dependence crucial
 - cf previous high– E_T excess

Global Fits

- State of the art: NLO cross sections with NLO evolution
- Global fits are reperformed \sim once every two years
 - Martin, Roberts, Stirling and Thorne (MRST)
 - a Coordinated Theoretical and Experimental project for QCD (CTEQ)
- pdfs now come with uncertainties
 - propagated from experimental errors
 - uncertainties due to theoretical assumptions?

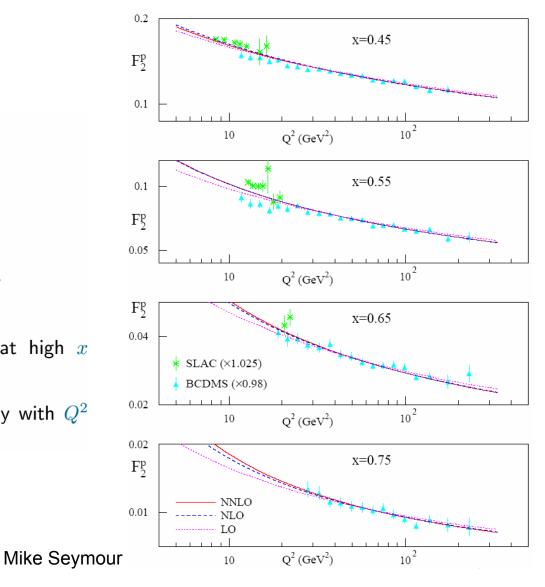
Parton Distribution Functions at Large x

Important Issues

with thanks to Robert Thorne

- How much good data do we need at high x?
- How much do we trust theoretical framework?
 - Large x resummation?
 - Small $W^2 \sim Q^2(1-x)$ power corrections
- 'Theoretical' questions (with phenomenological implications)
 - Are sea quark/antiquark distributions asymmetric?
 - u,d \Rightarrow YES
 - s?
 - Are valence quarks isospin symmetric?

Perturbative Evolution at Large x


Not very convergent

At large x

$$C_{2,q}^{1,NS}(x,\mu^2) \sim \alpha_S(\mu^2) \frac{\ln(1-x)}{(1-x)_+}$$
$$C_{2,q}^{n,NS}(x,\mu^2) \sim \alpha_S^n(\mu^2) \frac{\ln^{2n-1}(1-x)}{(1-x)_+}.$$

This leads to an enhancement of $F_2(x, Q^2)$ at high x compared to the quark distributions.

Since these positive contributions fall off quickly with $Q^2 \rightarrow$ quicker evolution of $F_2(x, Q^2)$.

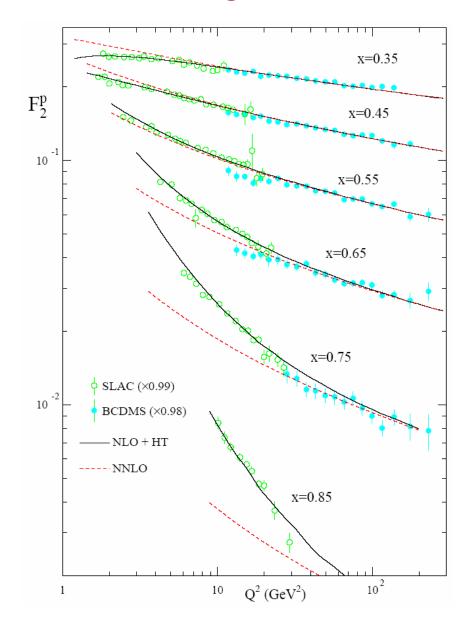
pQCD, SM and BSM

Perturbative Evolution at Large x

 log(1-x) terms can be summed to all orders, but ambiguous

 $\frac{dF_2(x,Q^2)}{d\ln Q^2} \sim P^{NS}(x,Q^2) \otimes F_2(x,Q^2)$

where

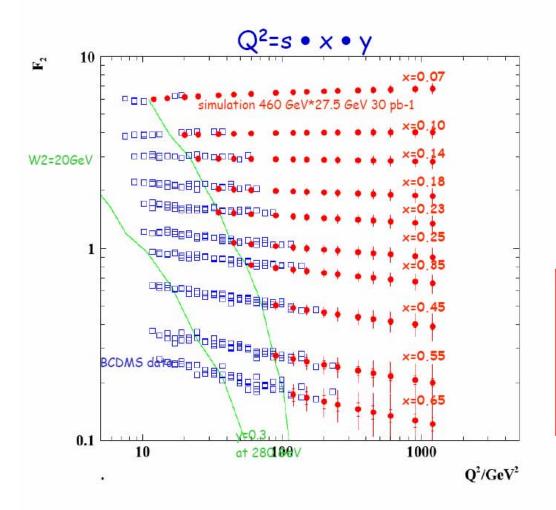

$$P^{NS}(x,Q^2) \sim \frac{\alpha_S(Q^2/(1-z))}{(1-x)_+},$$

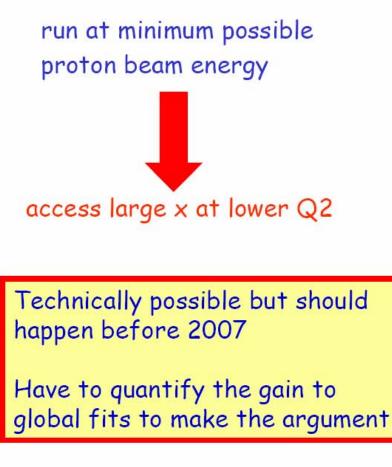
and in performing the convolution one must integrate over the Landau pole in the coupling.

 $ightarrow \mathcal{O}ig(rac{\Lambda^2_{QCD}}{Q^2(1-x)}ig)$ ambiguity in evolution.

(In moment space $\gamma^{NS}(N,Q^2)$ has an ambiguity $\mathcal{O}(\frac{N\Lambda^2_{QCD}}{Q^2})$)

Hence, there is an ambiguity in the perturbative evolution cancelled by that in the higher twist correction. The size of the ambiguity may be used to estimate the higher twist correction (renormalons), but this is always an estimate with an undetermined normalization.

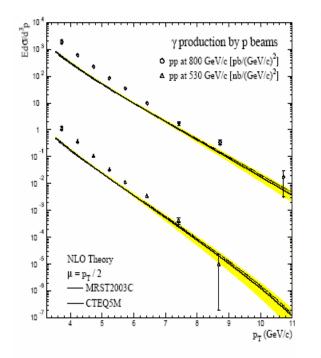


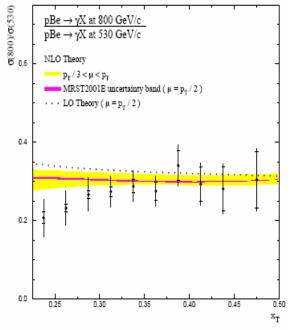

Parton Distribution Functions at Large x

- Summary: more accurate high x data are needed
 - To pin down leading twist pdfs more accurately
 - Q² as large as possible
 - To validate theoretical framework, test resummation in the evolution, measure non-leading twist ("power") corrections
 - Q² and x **range** as wide as possible
- Result: more reliable quark pdfs at large x and high Q²
 - and also (through sum rules) more reliable quark and gluon pdfs at smaller x values
- The competition: HERA-III ~ 6 month run at ~ ½ current proton beam energy ???

Access to larger x @ HERA

M. Klein

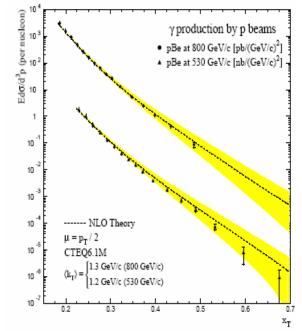



19

Prompt Photon Measurements in p-p

- Traditionally thought of as measure of gluon pdf
 - dominated by $q+g\rightarrow\gamma+q$
- But perturbation theory out of control
 - Fragmentation component (final state $q \rightarrow q\gamma$) poorly constrained
 - Large renormalization/factorization scale uncertainty at NLO
 - Large intrinsic k_{\perp} needed (non-perturbative?)
 - E706 vs WA70?
- May be worth revisiting to learn more about QCD of photon production, but unlikely to constrain pdfs...

E706 hep-ex/0407011



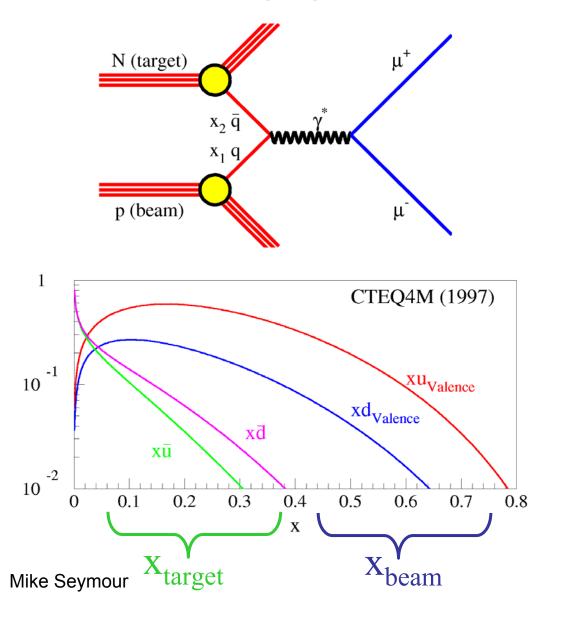
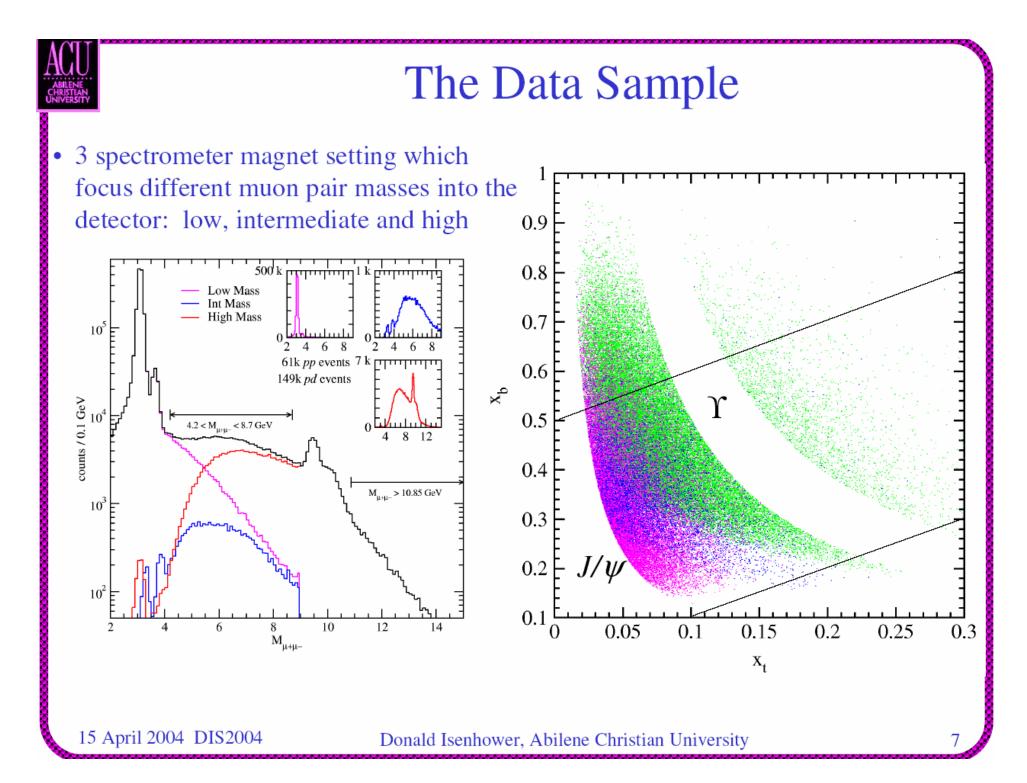
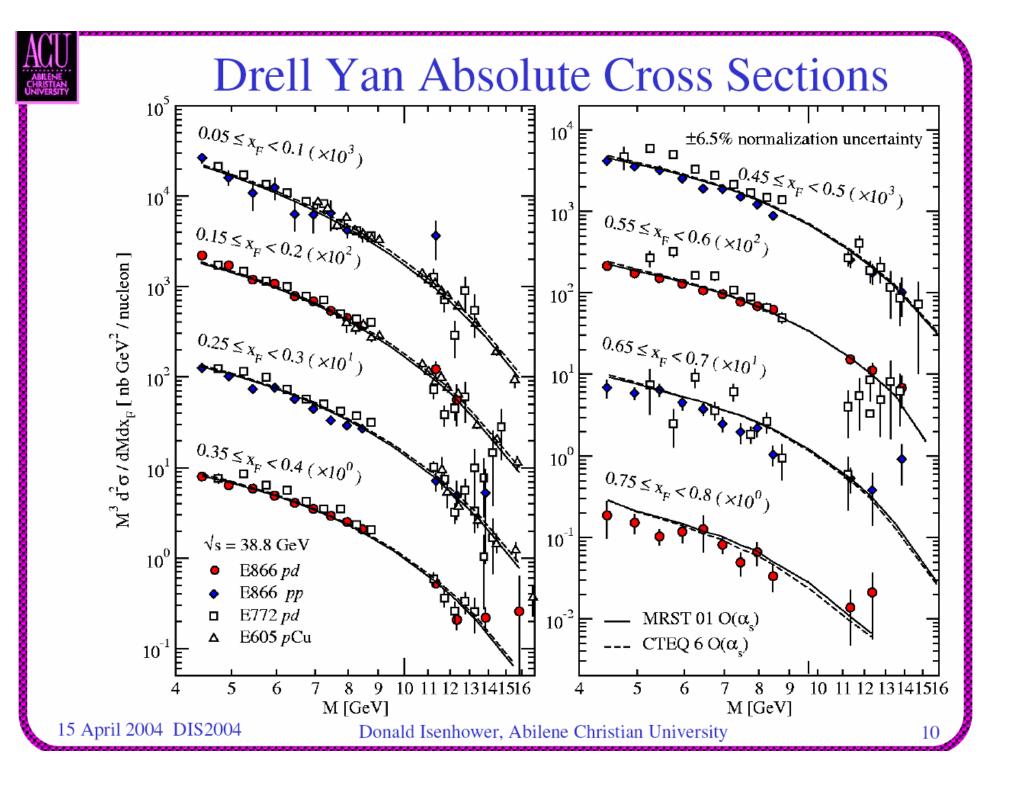

FIG. 25: Invariant differential cross sections per nucleon for direct-photon production as functions of p_T in pp interactions at 800 and 530 GeV/c. The error bars represent the statistical and systematic uncertainties combined in quadrature; the innermost interval indicates the statistical uncertainties. Overlaid on the data are NLO PQCD predictions for the CTEQ5M and MRST2003C PDF; the band illustrates the PDF uncertainty estimated via the MRST2001E set.

FIG. 26: The ratio of 800 GeV/c to 530 GeV/c proton beam direct-photon cross sections as a function of x_T . The error bars represent the statistical and systematic uncertainties combined in quadrature; the innermost interval indicates the statistical uncertainties. The dotted curve shows the results of LO PQCD calculations using the CTEQ5L PDF and $\mu = p_T/2$. Shaded bands illustrate the results from NLO PQCD calculations. The outer band is bounded by $\mu = p_T/3$ and $\mu = p_T$; the inner band by the uncertainty of the MRST2001E PDF set.


FIG. 30: Invariant differential cross sections per nucleon for direct-photon production as functions of x_T in pBe interactions at 800 and 530 GeV/c. The error bars represent the statistical and systematic uncertainties combined in quadrature; the innermost interval indicates the statistical uncertainties. Overlaid on the data are k_T -enhanced NLO PQCD calculations. The shaded region represents the uncertainty band associated with the CTEQ6.1M PDF set.

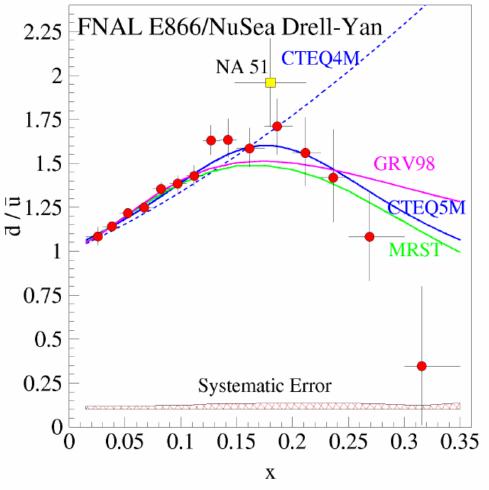

Drell–Yan Production in p–p

- Best way to measure sea quark distributions
- Separate d and u shapes
- Fermilab E866/NuSea experiment

pQCD, SM and BSM

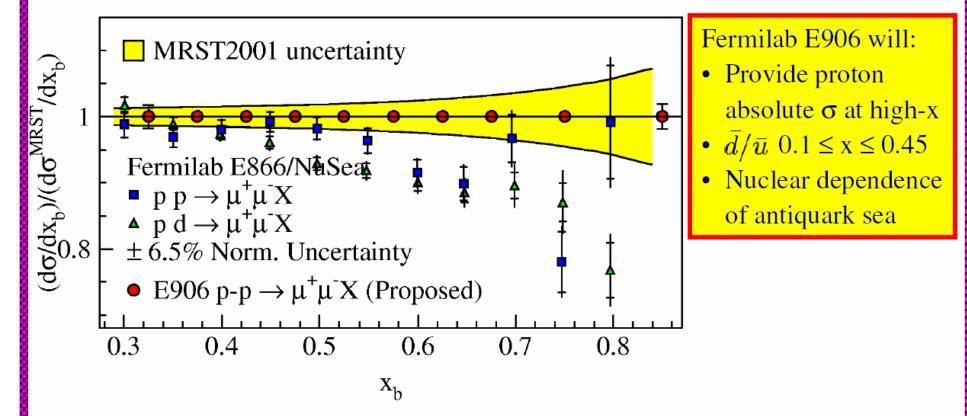
E866 quark sea distributions: \bar{d}/\bar{u}

• Select $x_b > x_t$ to get first term (detector acceptance does this).


 $\sigma_{\rm DY} \propto \sum_{i} e_i^2 \left[\bar{q}_{ti}(x_t) q_{bi}(x_b) + q_{ti}(x_t) \bar{q}_{bi}(x_b) \right]$

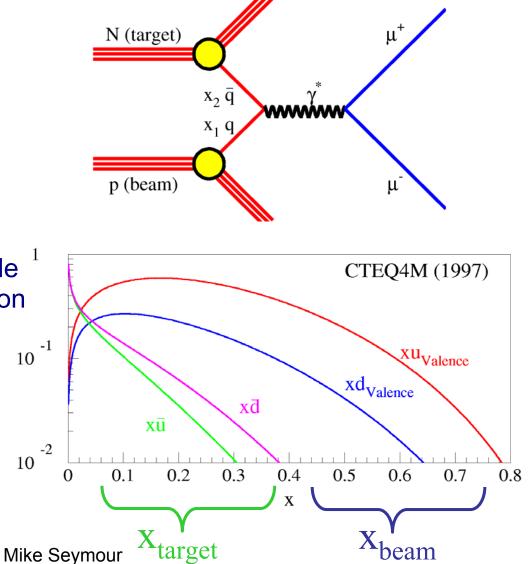
• Study ratio of deuterium to hydrogen

$$\frac{\sigma^{pd}}{2\sigma^{pp}}\Big|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$


(Actually use full NLO calculation to extract sea quark ratio)

• Approx. 360,000 events.

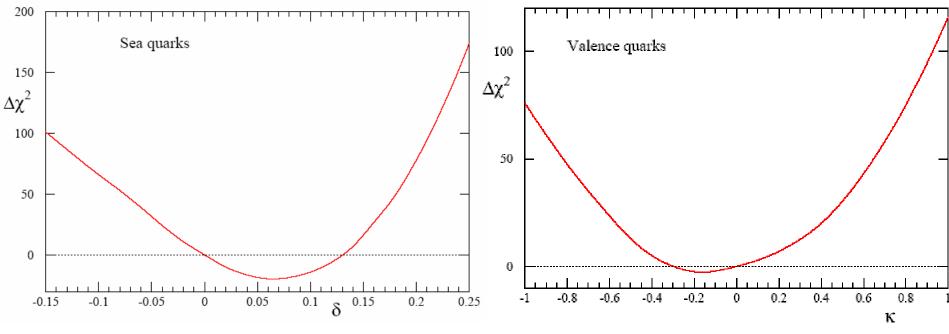
Donald Isenhower, Abilene Christian University


Future Drell-Yan at Fermilab: E906

- Fixed-target Drell-Yan with 120 GeV Fermilab Main Injector
- $\sigma_{DY} \propto 1/\sqrt{s}$ Larger cross section (more statistics)
- Scheduled to start collecting data in late 2008

Drell–Yan Production in p–p

- Best way to measure sea quark distributions
- Separate d and u shapes
- Fermilab E866/NuSea experiment
- Future: E906 experiment
- Good enough data over wide enough range → high x gluon from evolution

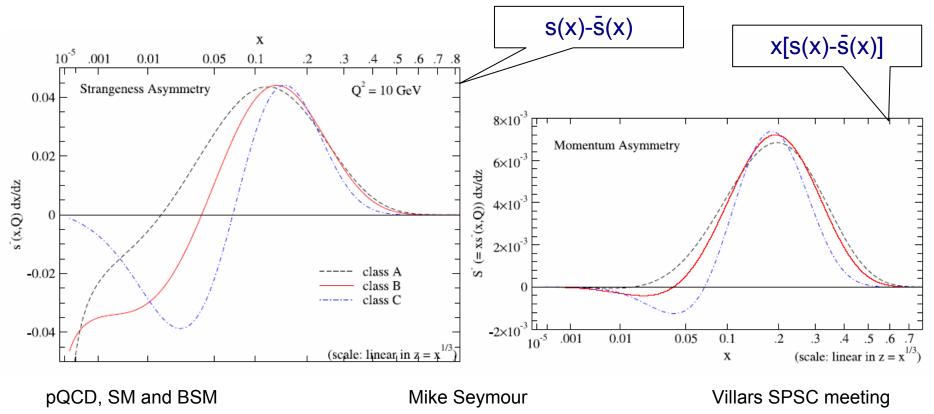


Isospin Violation in Valence Distributions

• Isospin $\Rightarrow f_{u/p}(x,Q^2) = f_{d/n}(x,Q^2)$ etc

Variation of γ^2 with isospin violation parameters

- Models of explicit isospin violation at low $Q^2 \rightarrow small$
- Global fit (MRST) $\Rightarrow \sim 0.5\%$ violation in momentum sum

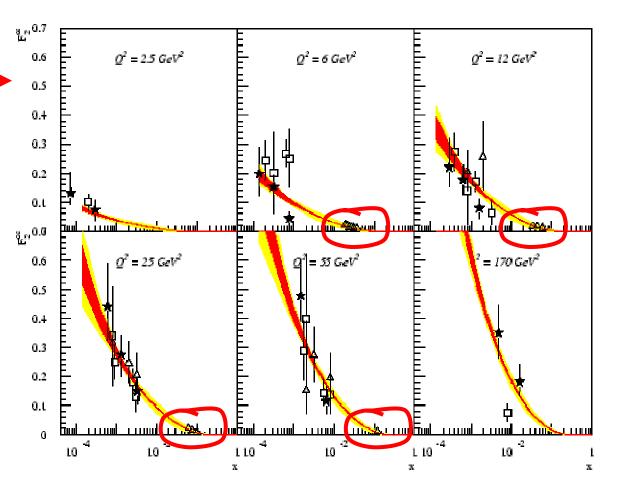

A.D.Martin, R.G.Roberts, W.J.Stirling and R.S.Thorne, hep-ph/0308087

Isospin Violation in Valence Distributions

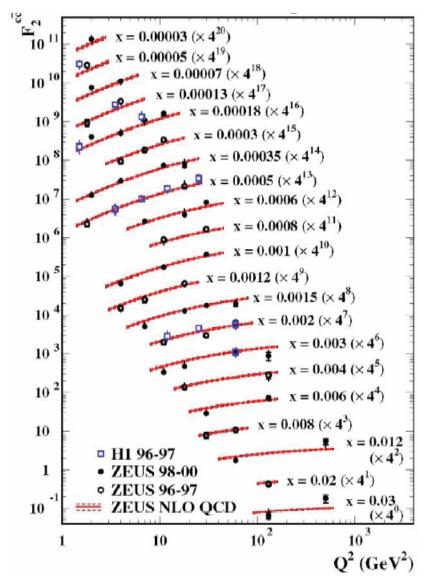
- Isospin $\Rightarrow f_{u/p}(x,Q^2) = f_{d/n}(x,Q^2)$ etc
- Models of explicit isospin violation at low $Q^2 \rightarrow small$
- Global fit (MRST) $\Rightarrow \sim 0.5\%$ violation in momentum sum
- QED effects in evolution equation ⇒ u quarks evolve faster than d quarks
- Next MRST set will include $f_{\gamma/p}$ and hence this source of isospin violation...
- ⇒ Important to have data on deuterium (isoscalar) targets (see later...)

Strange–Antistrange Asymmetry

- Strange quark distribution best measured from CC charm production, eg v_{μ} +s $\rightarrow \mu^{-}$ +c (CCFR+NuTeV)
- CTEQ fits (Kretzer et al hep-ph/0312322) allow $s(x) \neq \bar{s}(x)$


Strange–Antistrange Asymmetry

- Strange quark distribution best measured from CC charm production, eg v_{μ} +s $\rightarrow \mu^{-}$ +c (CCFR+NuTeV)
- CTEQ fits (Kretzer et al hep-ph/0312322) allow $s(x) \neq \bar{s}(x)$
- Results on x[s(x)-s(x)] stable >0
- \Rightarrow important to have sign-selected data


(see later...)

Charm Production Near Threshold

- EMC data -
- → Validate theoretical understanding of heavy flavour pdfs (variable flavour number schemes)
- → Perhaps measure charm mass…?

cf HERA reach...

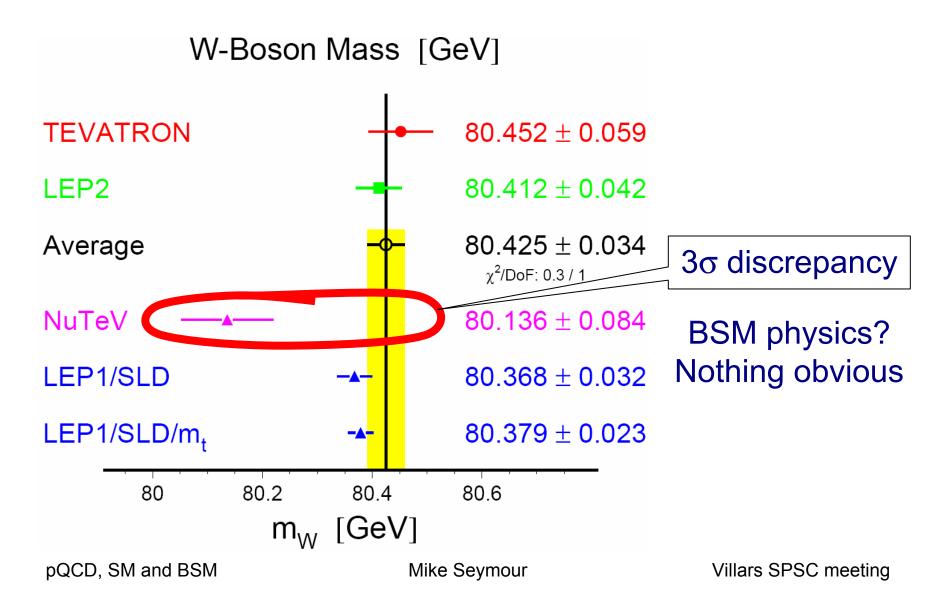
pQCD, SM and BSM

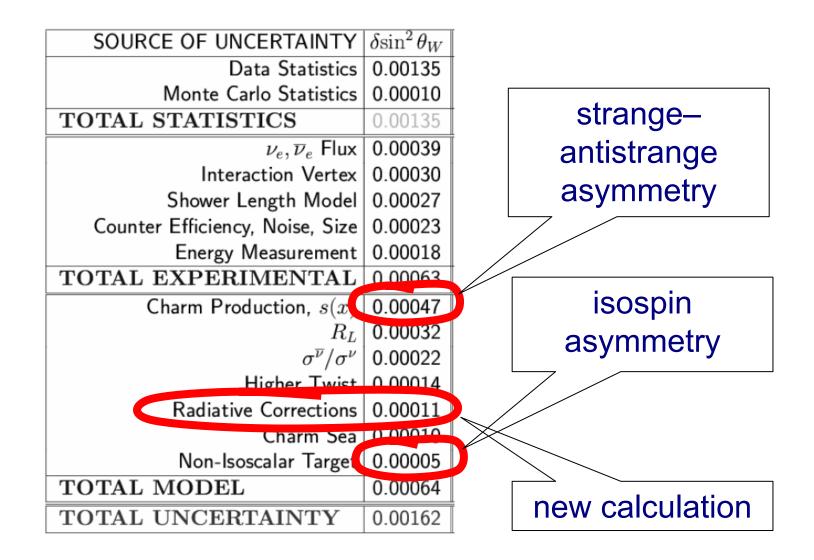
Mike Seymour

Villars SPSC meeting

PDF Summary

- Fixed target: unique measurements at
 - large x
 - medium Q²
- Crucial for LHC ability to make day-1 discoveries
 - Longer term, probably superseded by in-situ measurements but always important to validate framework
- Crucial to our understanding of hadron structure
 - Isospin symmetry
 - Quark–antiquark asymmetry
 - Heavy quark parton model
 - Charm mass measurement?
- Crucial for electroweak measurement, $sin^2\theta_w...$


$\sin^2\theta_w$ from v–isoscalar DIS data (NuTeV)


- Traditional method: (CCFR, CHARM, CDHS, …)
 - Llewellyn-Smith relation: $\frac{\sigma_{NC}^{\nu}}{\sigma_{CC}^{\nu}} = \frac{1}{2} \sin^2 \theta_w + \frac{5}{9} \sin^4 \theta_w \left(1 + \frac{\sigma_{CC}^{\nu}}{\sigma_{CC}^{\bar{\nu}}}\right)$
 - - v/\bar{v} difference
 - u/d pdf shape difference
 - strange sea contribution
 - final state charm effects/mass
 - \Rightarrow had hit systematic limit
- NuTeV: sign-selected v beam:

- Paschos–Wolfenstein relation:
$$\frac{\sigma_{NC}^{\nu} - \sigma_{NC}^{\overline{\nu}}}{\sigma_{CC}^{\nu} - \sigma_{CC}^{\overline{\nu}}} = \frac{1}{2} - \sin^2 \theta_w$$

sin²θ = 0.2277±0.0013(stat)±0.0009(syst)

$sin^2\theta_w = (1-m_w^2/m_z^2) \Rightarrow m_w$ measurement

pdf corrections

•
$$\frac{\sigma_{NC}^{\nu} - \sigma_{NC}^{\bar{\nu}}}{\sigma_{CC}^{\nu} - \sigma_{CC}^{\bar{\nu}}} = \frac{1}{2} - \sin^2 \theta_w$$

$$+ \left(1 - \frac{7}{3}\sin^2 \theta_2\right) (\delta U_V - \delta D_V) / Q_V$$

$$- \delta U_V = U_V^{p} - D_V^{n} - \left(1 - \frac{7}{3}\sin^2 \theta_2\right) S^{-} / Q_V$$

$$- \delta D_V = D_V^{p} - U_V^{n}$$

$$- Q_V = (U_V^{p} + D_V^{n} + D_V^{p} + U_V^{n}) / 2$$

$$- S^{-} = S - \overline{S}$$

- MRST: $(\delta U_V \delta D_V)/Q_V \sim -0.5\% \rightarrow \Delta sin^2 \theta_w \sim -0.0025$
- CTEQ: S⁻ ~ +0.0016 $\rightarrow \Delta sin^2 \theta_w \sim -0.0016$
- i.e. 1–1.5 σ differences, in the same direction (each with ~ 100% uncertainty)

Radiative corrections

- NuTeV use D.Bardin, V.Dokuchaeva program (1986)
- Recently recalculated in K.-P.O.Diener, S.Dittmaier, W.Hollick,

PRD69(2004)073005

modern setup (PDG 2003)

nauron	ic energy	cut. $D_{q'}$	> 10 Gev	
IPS	$R_0^{ u}$	$\delta R^{ u}_{NC}$	$\delta R^{ u}_{CC}$	$\Delta \sin^2 \theta_W$
$\alpha(0)$	0.31766	0.0582	-0.0758	-0.0082
$\alpha(m_Z)$	0.31766	-0.0639	0.0452	-0.0088
G_F	0.31766	0.0003	-0.0185	-0.0085

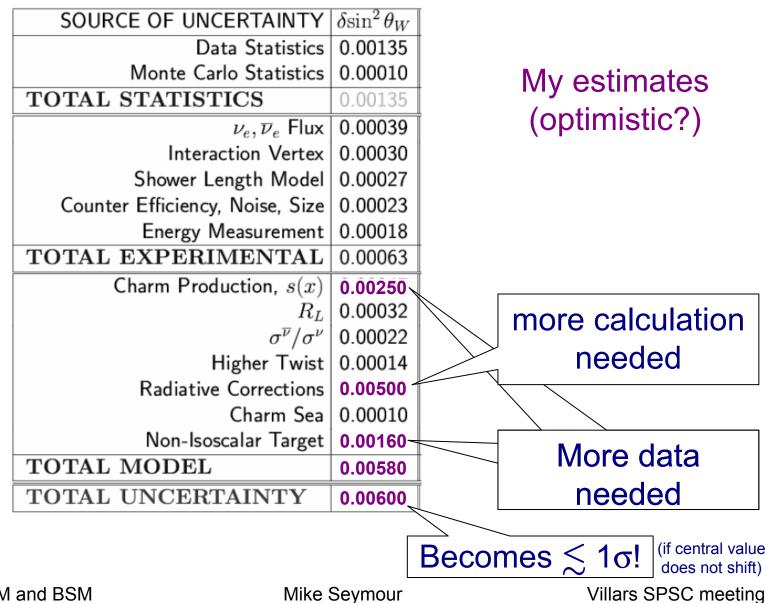
Hadronic energy cut: $E_{\rm e} > 10 \, {\rm GeV}$

Hadron	ic+photor			$\vdash E_{\gamma} > 10$ GeV
IPS	$R_0^{ u}$	$\delta R^{ u}_{NC}$	$\delta R^{ u}_{CC}$	$\Delta \sin^2 \theta_W$
$\alpha(0)$	0.31766		-0.0842	-0.0118
$\alpha(m_Z)$	0.31766	-0.0632	0.0363	-0.0126
G_F	0.31766	0.0011	-0.0272	-0.0122

Cut aft	$\text{ er } q' - \gamma$	recombina	tion: $(E_q$	$(E_{\gamma},E_{\gamma})>$ 10GeV
IPS	R_0^{ν}	$\delta R^{ u}_{NC}$	$\delta R^{ u}_{CC}$	$\Delta \sin^2 heta_W$
$\alpha(0)$	0.3177	0.0586	-0.0770	-0.0086
$lpha(m_Z)$	0.3177	-0.0635	0.0439	-0.0092
G_F	0.3177	0.0008	-0.0198	-0.0090

- absolute theor. uncertainties in $\Delta \sin^2 \theta_W$:
- \rightarrow scheme dependence $\approx 5 \cdot 10^{-4}$
- \rightarrow final state energy cut: $\approx 4 \cdot 10^{-3}$

Hadronic ener	gy cu	t: $E_{q'} > 1$	10 GeV		
IPS	FS	$R_0^{ u}$	$\delta R^{ u}_{NC}$	$\delta R^{ u}_{CC}$	$\Delta \sin^2 \theta_W$
result of BD	ВD	_	-0.0021	-0.0223	-0.0114
G_F	MS	0.31455	0.0010	-0.0202	-0.0090
G'_F	MS	0.33113	-0.0018	-0.0186	-0.0095
G_F	ВD	0.31455	-0.0026	-0.0184	-0.0098
G'_F	ВD	0.33113	-0.0050	-0.0169	-0.0103


- \rightarrow absolute dependence on FS $< 8 \cdot 10^{-4}$
- \rightarrow input parameter scheme dep. < 5 \cdot 10⁻⁴
- \rightarrow energy cut dep. < 4 \cdot 10⁻³ (not shown)
- → BD result not reproduced systematic deviations in $\delta R^{\nu}_{NC/CC}$?
- Conclusion: uncertainty at least ×10 and maybe ×100

Mike Seymour

Villars SPSC meeting

NuTeV: total theor. uncertainty $\approx 5 \cdot 10^{-5}$

SOURCE OF UNCERTAINTY	$\delta \sin^2 \theta_W$
Data Statistics	0.00135
Monte Carlo Statistics	0.00010
TOTAL STATISTICS	0.00135
$ u_e, \overline{ u}_e \; Flux $	0.00039
Interaction Vertex	0.00030
Shower Length Model	0.00027
Counter Efficiency, Noise, Size	0.00023
Energy Measurement	0.00018
TOTAL EXPERIMENTAL	0.00063
Charm Production, $s(x)$	0.00047
R_L	0.00032
$\sigma^{\overline{ u}}/\sigma^{ u}$	0.00022
Higher Twist	0.00014
Radiative Corrections	0.00011
Charm Sea	0.00010
Non-Isoscalar Target	0.00005
TOTAL MODEL	0.00064
TOTAL UNCERTAINTY	0.00162

pQCD, SM and BSM

$sin^2\theta_w$ Summary

- Fixed target v data \rightarrow unique opportunity for independent measure of sin² θ_w
- Theoretical errors almost certainly underestimated
 - Can be reduced with more calculation
 - To match experimental error will need better pdf measurements
 - Isospin violation
 - Strange–antistrange asymmetry

BSM Physics — Charged Lepton Flavour Changing Neutral Currents

with thanks to Apostolos Pilaftsis see talk of S.Gninenko

- Predicted in most Beyond Standard Models
 - Seesaw mechanism for neutrino masses
 - Loop vertex via Majorana mass term
 - \rightarrow off-diagonal effective Higgs vertex
 - Small in SM seesaw
 - Sizeable in MSSM seesaw ⇔ non-decoupling of heavy particles
 - Extra dimension models
 - Left-right symmetric models
- $\mu \rightarrow e\gamma$ most stringent limits \Rightarrow received most attention
- $v_{\tau} \leftrightarrow v_{\mu}$ mixing ~ maximal
- $\Rightarrow \tau \leftrightarrow \mu$ mixing largest?

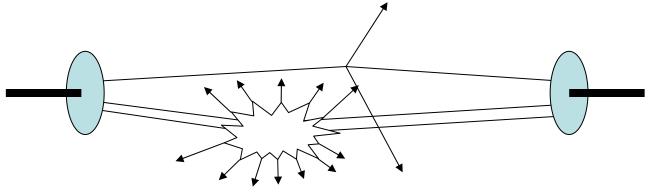
Model-Independent Approach

- Low energy effective theory:
- Four point vertex: $\frac{C}{\Lambda^2}(\bar{\mu}\Gamma\tau)(\bar{q}^{\alpha}\Gamma q^{\beta})$
- Strong coupling: assume $C \sim 4\pi$
- Weak coupling, eg SUSY, C≲1, rescale Λ by √(4π/C) (but remember non-decoupling)
- Scattering experiments favoured: effects grow with E²
- Several operators seem within reach

D.Black, T.Han, H.-J.He, M.Sher Phys.Rev.D66:053002,2002

		J		,	
	Λ Bound	1	γ_5	γ_{σ}	$\gamma_{\sigma}\gamma_{5}$
(ūu	$\begin{array}{c} 2.6 \ \text{TeV} \\ (\tau \to \mu \pi^+ \pi^-) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \to \mu \pi^0) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \to \mu \rho) \end{array}$	$\begin{array}{c} 11 \ {\rm TeV} \\ (\tau \rightarrow \mu \pi^0) \end{array}$
4-	$\bar{d}d$	$\begin{array}{c} 2.6 \ \text{TeV} \\ (\tau \to \mu \pi^+ \pi^-) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \to \mu \pi^0) \end{array}$	$\begin{array}{c} 12 \ \mathrm{TeV} \\ (\tau \to \mu \rho) \end{array}$	$\begin{array}{c} 11 \ {\rm TeV} \\ (\tau \rightarrow \mu \pi^0) \end{array}$
∠4π ≲1,	$\overline{s}s$	$\begin{array}{c} 1.5 \ \mathrm{TeV} \\ (\tau \to \mu K^+ K -) \end{array}$	$\begin{array}{c} 9.9 \ \mathrm{TeV} \\ (\tau \to \mu \eta) \end{array}$	$\begin{array}{c} 14 \ \mathrm{TeV} \\ (\tau \to \mu \phi) \end{array}$	9.5 TeV $(\tau \rightarrow \mu \eta)$
~',	\overline{sd}	$\begin{array}{c} 2.3 \text{ TeV} \\ (\tau \to \mu K^+ \pi^-) \end{array}$	$\begin{array}{c} 3.7 \ {\rm TeV} \\ (\tau \rightarrow \mu K^0) \end{array}$	$\begin{array}{c} 13 \ \mathrm{TeV} \\ (\tau \rightarrow \mu K^{\star}) \end{array}$	$\begin{array}{c} 3.6 \ {\rm TeV} \\ (\tau \rightarrow \mu K^0) \end{array}$
ng)	bd	$\begin{array}{c} 2.2 \text{ TeV} \\ (B \to \pi \mu \tau) \end{array}$	$\begin{array}{c} 9.3 \ {\rm TeV} \\ (B \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 2.2 \ \mathrm{TeV} \\ (B \to \pi \mu \tau) \end{array}$	$\begin{array}{c} 8.2 \ \mathrm{TeV} \\ (B \to \mu \tau) \end{array}$
0,	$\bar{b}s$	$\begin{array}{c} 2.6 \ \text{TeV} \\ (B \to K \mu \tau) \end{array}$	$\begin{array}{c} 2.8 \ {\rm TeV} \\ (B_{\rm s} \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 2.6 \ \mathrm{TeV} \\ (B \to K \mu \tau) \end{array}$	$\begin{array}{c} 2.5 \ \mathrm{TeV} \\ (B_{\mathrm{s}} \rightarrow \mu \tau) \end{array}$
	$\bar{t}c$	$\begin{array}{c} 190 \mathrm{GeV} \\ (t \to c \mu \tau) \end{array}$	$\begin{array}{c} 190 \ \mathrm{GeV} \\ (t \rightarrow c \mu \tau) \end{array}$	$\begin{array}{c} 310 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 310 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$
2	$\bar{t}u$	$\begin{array}{c} 190 \ \mathrm{GeV} \\ (t \to u \mu \tau) \end{array}$	$\begin{array}{c} 190 \ \mathrm{GeV} \\ (t \rightarrow u \mu \tau) \end{array}$	$\begin{array}{c} 650 \ \mathrm{GeV} \\ (B \to \mu \tau) \end{array}$	$\begin{array}{c} 650 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$
	\overline{cu}	*	*	$550 \mathrm{GeV}$ $(\tau \to \mu \phi)$	$\begin{array}{l} 550 \ \mathrm{GeV} \\ (\tau \to \mu \phi) \end{array}$
in	<i>ēc</i>	*	*	$\begin{array}{l} 1.1 \ \text{TeV} \\ (\tau \to \mu \phi) \end{array}$	$\begin{array}{l} 1.1 \ {\rm TeV} \\ (\tau \rightarrow \mu \phi) \end{array}$
	$\overline{b}b$	*	*	$\begin{array}{c} 180 \ {\rm GeV} \\ (\Upsilon \rightarrow \mu \tau) \end{array}$	*
Mike Seymour	ītt	*	*	$\begin{array}{c} 75 \ \mathrm{GeV} \\ (B \rightarrow \mu \tau) \end{array}$	$\begin{array}{c} 120 \ {\rm GeV} \\ (B \rightarrow \mu \tau) \end{array}$

pQCD, SM and BSM


$\tau \rightarrow \mu$ Summary

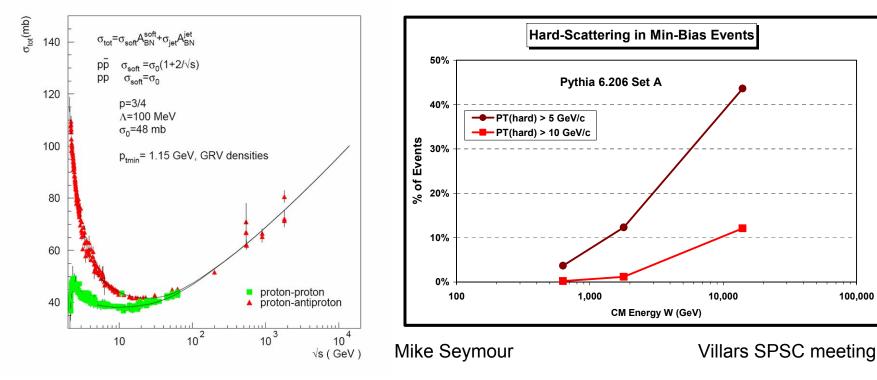
- Will never be as stringent as $\mu \rightarrow e\gamma$
- But does it need to be?
 - New physics \leftrightarrow third generation?
 - Connection with $v_{\tau} \leftrightarrow v_{\mu}$ mixing?
- If a signal is seen in $\mu \rightarrow e\gamma$, what next?
 - Flavour structure

Miscellanea — Pion Structure Functions

Miscellanea — Underlying Events

• Understanding the underlying event at LHC is crucial to almost all physics measurements there

- Dynamics crucial: fluctuations and correlations
- Can fixed target programme help?


Miscellanea — Underlying Events

Understanding the underlying event at LHC is crucial to ulletalmost all physics measurements there

Rick Field, CDF tune of PYTHIA

100,000

- Dynamics crucial: fluctuations and correlations \bullet
- Can fixed target programme help? Not convinced ۲

Summary

- Large x pdfs can be better measured in fixed target than anywhere else
 - Intrinsic interest: structure of hadrons (and nuclei...)
 - isospin violation?
 - strange component of hadrons and strange–antistrange asymmetry
 - Input into collider physics: precision cross sections and searches
 - Drell–Yan data on sea quark distributions \rightarrow high-x gluon
 - Charm quark mass?
- $sin^2\theta_w$ measurement has a long way to go
 - Experimental errors dominated by statistics
 - Theoretical errors need more work
- Charged Lepton FCNC: $\mu \rightarrow \tau$ unique opportunity
- Other possibilities probably of less interest...

pQCD, SM and BSM

Mike Seymour