Hard Exclusive Processes

M. Diehl

Deutsches Elektronen-Synchroton DESY

Villars meeting, 24 Sept. 2004

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Outline

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Basics of GPDs

Physics

How to measure GPDs?

Theoretical landscape

Experimental landscape

Conclusions

Overall aim

- investigate hadron structure at quark-gluon level
 QCD dynamics at large distances
- ► to probe this structure in controlled way use e.m. interactions + QCD dynamics at short distances → factorization

ション ふぼう ふぼう ふほう うらの

 \rightarrow \langle hadron | quark/gluon operator | hadron \rangle

Factorization: Deep inelastic scattering

• Im $\mathcal{A}(\gamma^* p \to \gamma^* p) \propto \int dx \ T(x, x_B, \log \frac{Q^2}{\mu^2}) f(x, \mu^2)$

Factorization: Deeply virtual Compton scattering (DVCS)

$$\int dz^{-} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p, s \rangle \Big|_{z^{+}=0, z_{T}=0} \propto H^{q} \times \bar{u}(p', s')\gamma^{+}u(p, s) + E^{q} \times \bar{u}(p', s') \frac{i\sigma^{+\alpha}(p'-p)_{\alpha}}{2m}u(p, s),$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

▶ light-cone coordinates: $v^{\pm} = v^0 \pm v^3$

$$\int dz^{-} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p, s \rangle \Big|_{z^{+}=0, z_{T}=0} \propto H^{q} \times \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \times \bar{u}(p', s') \frac{i\sigma^{+\alpha}(p'-p)_{\alpha}}{2m}u(p, s),$$

• variables in H^q , E^q :

 $\pmb{x},\pmb{\xi}$ momentum fractions w.r.t. $P=\frac{1}{2}(p+p')$ in amplitudes: $\pmb{\xi}=x_B/(2-x_B),~\pmb{x}$ integrated over

t can trade for transverse momentum transfer

 μ^2 resolution scale \rightarrow generalized DGLAP equations

$$\int dz^{-} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p, s \rangle \Big|_{z^{+}=0, z_{T}=0}$$

$$\propto H^{q} \times \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \times \bar{u}(p', s') \frac{i\sigma^{+\alpha}(p'-p)_{\alpha}}{2m}u(p, s),$$

proton spin structure:

$$\begin{split} H^q \leftrightarrow s &= s' & \text{ for } p = p' \text{ recover usual density:} \\ H^q(x,\xi=0,t=0) &= q(x) \\ E^q \leftrightarrow s \neq s' & \text{ decouples for } p = p' \end{split}$$

similar definitions for polarized quarks and for gluons

$$\begin{split} \int dz^{-} e^{ixP^{+}z^{-}} \langle p', s' | \,\bar{q}(-\frac{1}{2}z) \,\gamma^{+}q(\frac{1}{2}z) \, |p,s\rangle \Big|_{z^{+}=0, \, z_{T}=0} \\ \propto \quad H^{q} \times \bar{u}(p',s') \gamma^{+}u(p,s) + E^{q} \times \bar{u}(p',s') \frac{i\sigma^{+\alpha}(p'-p)_{\alpha}}{2m} u(p,s), \end{split}$$

▶ Mellin moments: $\int dx \, x^n \rightarrow \text{local operator} \rightarrow \text{form factors}$

ション ふぼう ふぼう ふほう うらの

$$\begin{split} \blacktriangleright \int dx &\to \text{ vector current} \\ \sum_q e_q \int dx \, H^q(x,\xi,t) = F_1(t) \quad \text{Dirac f.f.} \\ \sum_q e_q \int dx \, E^q(x,\xi,t) = F_2(t) \quad \text{Pauli f.f.} \end{split}$$

$$\begin{split} \int dz^{-} e^{ixP^{+}z^{-}} \langle p', s' | \,\bar{q}(-\frac{1}{2}z) \,\gamma^{+}q(\frac{1}{2}z) \, |p,s\rangle \Big|_{z^{+}=0, \, z_{T}=0} \\ \propto \quad H^{q} \times \bar{u}(p',s') \gamma^{+}u(p,s) + E^{q} \times \bar{u}(p',s') \frac{i\sigma^{+\alpha}(p'-p)_{\alpha}}{2m} u(p,s), \end{split}$$

▶ Mellin moments: $\int dx \, x^n \rightarrow \text{local operator} \rightarrow \text{form factors}$

ション ふぼう ふぼう ふほう うらの

can be evaluated in lattice QCD pioneering studies: QCDSF Collab. '03, LHPC Collab. '03

$$\int dz^{-} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p, s \rangle \Big|_{z^{+}=0, z_{T}=0} \propto H^{q} \times \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \times \bar{u}(p', s') \frac{i\sigma^{+\alpha}(p'-p)_{\alpha}}{2m} u(p, s),$$

► $\int dx \, x \rightarrow \text{energy-momentum tensor}$ $\frac{1}{2} \int dx \, x(H^q + E^q) = J^q(t)$ X. Ji '96 $J^q(0) = \text{total angular momentum carried}$ by quark flavor q (helicity and orbital part)

◆□> <個> <目> <目> <目> <000</p>

Physics information in GPDs: Spin

► E^q ≠ 0 needs orbital angular momentum between partons

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

] measurement of E^q (and E^g) requires transverse target polarization otherwise E suppressed w.r.t. H by kinematical prefactors

- key observables: transverse target spin asymmetry in DVCS and production of vector mesons (ρ, ω, φ)
- nontrivial flavor structure:

from magnetic moments know

 $\int dx \, E^u > 0$ but $\int dx \, E^d < 0$

More physics in GPDs

- different from k_T dependent GPDs

 (appear e.g. in semi-inclusice DIS)
 connection between two types of distributions:
 work in progress
- k_T is integrated over simplifies after Fourier transform to transverse space

イロト 不得下 イヨト イヨト ヨー うらぐ

Impact parameter representation

- states with definite transverse position (impact parameter): |p⁺, b⟩ = ∫ d²p e^{-ibp} |p⁺, p⟩ formal: eigenstates of 2 dim. position operator
- can exactly localize proton in 2 dimensions (in 3 dim. only up to Compton wavelength)
- can stay in frame where proton moves fast (parton interpretation!)
- **b** is center of momentum of partons in proton D. Soper '77

$$\mathbf{b} = \frac{\sum_i k_i^+ \mathbf{b}_i}{\sum_i k_i^+} \qquad (i = q, \bar{q}, g)$$

ション ふぼう ふぼう ふほう うらの

non-relativistic analog: center of mass

Impact parameter GPDs

for simplicity take ξ = 0 and s = s'
 (can generalize to ξ ≠ 0 and to s ≠ s')

$$\begin{split} \int dz^{-} e^{ixP^{+}z^{-}} \langle p^{+}, \mathbf{b}, s | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p^{+}, \mathbf{b}, s \rangle \Big|_{z^{+}=0, \mathbf{z}=\mathbf{0}} \\ \propto \int d^{2} \mathbf{\Delta} e^{i\mathbf{b}\mathbf{\Delta}} H^{q}(x, \xi=0, t=-\mathbf{\Delta}^{2}) \end{split}$$

- Fourier transformed GPD gives distribution of quarks with momentum fraction x and transverse distance b from proton center
 M. Burkardt '02
- EXP: key observable: t dependence of cross sections at given x_B need sufficient lever arm in t for Fourier transform

Dynamics correlates x and b distribution of partons

Examples:

- chiral dynamics M. Strikman, C. Weiss '03 partons at large b from pion cloud only possible for small enough x
 - $\rightarrow~$ find increase in average b^2 between $x\sim 0.2$ and $x\sim 0.05$

Dynamics correlates x and b distribution of partons

Examples:

Gribov diffusion

cascade of parton radiation \rightarrow smaller $x \leftrightarrows$ larger b $\langle b^2 \rangle = 4 \alpha' \log \frac{1}{x}$

connection with confinement J. Bartels, H. Kowalski '01

 $\alpha'={\rm shrinkage}$ parameter, expect different for

hard vs. soft processes

 J/Ψ production at HERA: $\alpha'_{I\!P} \sim 0.1 \text{ GeV}^{-2}$ hadron-hadron scattering: $\alpha'_{I\!P} \approx 0.25 \text{ GeV}^{-2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

► quark vs. gluon exchange meson exchange: $\alpha'_{I\!\!R} \approx 0.9 \text{ GeV}^{-2}$ mixing of quark singlet and gluons $\rightsquigarrow ???$

Proton tomography

▶ plots: $d - \overline{d}$ in

- unpolarized proton (left)
- proton polarized in x-direction (right)

M.D. et al. '04

- ▶ distribution of $q \bar{q}$ from
 - data for e.m. nucleon form factors
 - assumptions on x and t dependence
- should
 - check these assumptions
 - investigate \bar{q} and gluons

イロト 不得下 イヨト イヨト ヨー うらぐ

 \rightarrow exclusive processes

Principle of measurement

- factorization theorems J. Collins et al. '97, J. Collins, A. Freund '98 very similar to those for deep inelastic scattering, Drell-Yan pair production, etc.
- ▶ processes: DVCS: $\gamma^* p \rightarrow \gamma p$

- best theory control:
 - leading twist: LO and NLO in α_s (NNLO: work in progress)

 subleading twist (1/Q suppressed): LO and partially NLO (very similar to spin structure function g₂)

Principle of measurement

▶ more processes: meson production: $\gamma^* p \rightarrow M p$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

• leading twist: LO and NLO in α_s

EXP:

- estimates of power corrections: can be substantial
 - ightarrow require larger Q^2 for quantitative interpretation
- different meson channels \rightarrow select/separate
 - quark flavors, quarks vs. gluons
 - q vs. \bar{q} /valence vs. sea quarks
 - distributions with different spin dependence

Testing factorization

▶ kinematical limit in factorization theorems: $Q^2 \rightarrow \infty$, x_B and t fixed, i.e. $-t \ll Q^2$

scaling predictions:

$$\left. \begin{array}{l} \mathcal{A}(\gamma_T^* \, p \to \gamma p) \sim Q^0 \\ \mathcal{A}(\gamma_L^* \, p \to M p) \sim Q^{-1} \end{array} \right\} \quad \text{at fixed } x_B \text{ and } t$$

ション ふぼう ふぼう ふほう うらの

up to effects $\sim \log Q^2$ from evolution/radiative corrections

EXP: to test scaling/use scaling violation need lever arm in Q^2 at given x_B

DVCS is special:

competes with Bethe-Heitler process at amplitude level

• cross section for $\ell p \to \ell \gamma p$

$$\frac{d\sigma_{\rm VCS}}{dx_B \, dQ^2 \, dt} : \frac{d\sigma_{\rm BH}}{dx_B \, dQ^2 \, dt} \sim \frac{1}{Q^2} : \frac{y^2}{t} \qquad \qquad y = \frac{Q^2}{x_B \, s_{\ell p}}$$

 small y: σ_{VCS} dominates moderate to large y: get VCS via interference with BH
 → can measure phase of Compton amplitude great help in reconstructing GPDs from observables
 measurements at equal x_B, Q² but different s_{ℓp} not equivalent

More on DVCS

- filter out interference term using cross section dependence on
 - ▶ beam charge e_ℓ
 - beam polarization P_{ℓ}

 $\blacktriangleright \phi$

general structure:

 $d\sigma(\ell p \to \ell \gamma p) \sim d\sigma_{\rm BH} + e_{\ell} P_{\ell} \, d\tilde{\sigma}_{\rm INT} + d\sigma_{\rm VCS}$ $+ e_{\ell} \, d\sigma_{\rm INT} + P_{\ell} \, d\tilde{\sigma}_{\rm VCS}$

with $d\sigma$ even and $d\tilde{\sigma}$ odd in ϕ

• sufficient to reverse e_{ℓ} and P_{ℓ} simultaneously

More on DVCS

$$d\sigma(\ell p \to \ell \gamma p) \sim d\sigma_{\rm BH} + e_{\ell} P_{\ell} \, d\tilde{\sigma}_{\rm INT} + d\sigma_{\rm VCS} + e_{\ell} \, d\sigma_{\rm INT} + P_{\ell} \, d\tilde{\sigma}_{\rm VCS}$$

from leading twist amplitudes:

$$\begin{aligned} & d\sigma_{\rm INT} ~\sim~ y ~\cos\phi~ {\rm Re}\mathcal{A}(\gamma^*p \to \gamma p) \\ & d\tilde{\sigma}_{\rm INT} ~\sim~ y^2 \sin\phi~ {\rm Im}\mathcal{A}(\gamma^*p \to \gamma p) \\ & d\sigma_{\rm VCS} ~\sim~ |\mathcal{A}(\gamma^*p \to \gamma p)|^2 \end{aligned}$$

- \blacktriangleright in principle can separate terms from ϕ dependence alone, but only if 1/Q suppressed terms small enough \rightarrow much cleaner extraction with different beam charges
- quantitative interpretation easier for $d\sigma_{\mu^+} d\sigma_{\mu^-}$ than for asymmetry $(d\sigma_{\mu^+} - d\sigma_{\mu^-})/(d\sigma_{\mu^+} + d\sigma_{\mu^-})$

Aside: GPDs and hadron-hadron collisions (How not to measure GPDs)

- no factorization for exclusive processes in *pp* collisions
 soft interactions between colliding hadrons/fragments
- ▶ phenomenological description of such reinteractions
 e.g. exclusive Higgs production pp → p + H + p at LHC
 A. Martin, V. Khoze, M. Ryskin et al.
- correlation between x and b distribution of partons is relevant for hadron-hadron collisions

ション ふぼう ふぼう ふほう うらの

- e.g. multiple parton interactions, selection of central collisions
- L. Frankfurt, M. Strikman, C. Weiss '03

Theory: status and prospects

Extracting GPDs from experiment

- solid basis: factorization theorems + QCD technology (profit from experience with inclusive processes)
 A. Belitsky et al. '02, M.D. '03
- work in progress: DVCS: precision tools meson production:
 - understand corrections to leading-order approximations
 - identify observables with small theory uncertainties (e.g. ratios)

ション ふぼう ふぼう ふほう うらの

Theory: status and prospects

Describing/understanding GPDs

- explored in a wide range of models
 view test their underlying assumptions
- general properties/specific features from chiral perturbation theory, large-N_c limit
- extensive program to evaluate moments in lattice QCD main challenge: results for physical quark masses expect steady progress in coming years
- \blacktriangleright challenge: understand well enough to make functional ansatz for ${\rm GPD}(x,\xi,t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

EXP: requires input from data

we are just beginning to understand t dependence

Theory: status and prospects

Describing/understanding hadron structure

- explored in a wide range of models
 v test their underlying assumptions
- ▶ general properties/specific features from chiral perturbation theory, large-N_c limit
- extensive program to evaluate moments in lattice QCD main challenge: results for physical quark masses expect steady progress in coming years
- \blacktriangleright challenge: understand well enough to make functional ansatz for ${\rm GPD}(x,\xi,t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

EXP: requires input from data

we are just beginning to understand t dependence

Experiment: requirements

- ▶ identify final state ℓpγ, ℓp π⁺π⁻ etc.
 (some measurements so far without detecting scattered p)
- ▶ large enough Q^2
- lever arm in Q² (scaling and evolution) and in t (impact parameter dependence) at given x_B
- lowish cross sections and multi-dimensional binning
 high luminosity
- ▶ for DVCS: polarized lepton beams of both charges → cleanest access to GPDs
- to study polarization dependence: polarized protons

in following concentrate on DVCS

Measurements of DVCS (published or being analyzed)

experiment	$s_{\ell p}$	$\mathcal{L}(unpol.)$	beam	pol. p
	$[GeV^2]$	$[\mathrm{cm}^2\mathrm{s}^{-1}]$		
JLab CLAS	8.9		pol.	
"	11.7	$2 \cdot 10^{34}$	pol.	long.
JLab Hall A	11.7	10^{37}	pol.	
HERMES*	52.6		pol., e^{\pm}	long. (?)

H1, ZEUS*	10^{5}	$\sigma_{ m VCS}$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

* without detecting scattered proton

Measurements of DVCS (published or being analyzed)

$$A_{LU} = \frac{d\sigma(e^{\uparrow}) - d\sigma(e^{\downarrow})}{d\sigma(e^{\uparrow}) + d\sigma(e^{\downarrow})}$$

average kinematics

•
$$Q^2 = 1.25 \text{ GeV}^2$$
, $x_B = 0.19 \text{ (CLAS)}$

• $Q^2 = 2.5 \text{ GeV}^2$, $x_B = 0.12$ (HERMES)

Measurements of DVCS (published or being analyzed)

 \blacktriangleright cross section for $\gamma^*p\to\gamma p$

▶
$$x_B \sim 5 \cdot 10^{-4}$$
 to 0.01

► at very small x_B and moderate Q² expect physics beyond leading-twist description → color dipole description, parton saturation, ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへ⊙

Measurements of DVCS (+ongoing and near future)

experiment	$s_{\ell p}$	$\mathcal{L}(unpol.)$	beam	pol. p
	$[GeV^2]$	$[\rm{cm}^{2}\rm{s}^{-1}]$		
JLab CLAS	8.9		pol.	
"	11.7	$2 \cdot 10^{34}$	pol.	long.
JLab Hall A	11.7	10^{37}	pol.	
HERMES*	52.6		pol., e^{\pm}	long. (?)
" *	52.6			transv.
"	52.6	$3 \cdot 10^{32}$	pol., e^\pm	
	105			
HI, ZEUS	105	0.1	$\sigma_{ m VCS}$.	
"	10^{5}	$4.5 \cdot 10^{31}$	pol., e^{\pm}	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

* without detecting scattered proton

Measurements of DVCS (projected errors)

 projections for HERMES recoil detector run 2006-07 beam polarization and beam charge asymmetries
 V. Korotkov, W.-D. Nowak, hep-ph/0108077

Measurements of DVCS $(x_B \text{ and } Q^2)$

kinematics for DVCS (taking into account event statistics)

★□▶ <圖▶ < ≧▶ < ≧▶ = 差 - 約<</p>

Measurements of DVCS (Future plans)

- ▶ JLab at 12 GeV (11 GeV for e^-p): pre-CDR
- ▶ eRHIC: Zeroth Design Report BNL proton (and heavy ion) ring + e[±] ring (or e⁻ linac)

ション ふぼう ふぼう ふほう うらの

ELIC

CEBAF e^- linac + proton (and light ion) ring

see talks at EIC workshop, JLab, May 2004

Measurements of DVCS (more projected errors)

▶ projections for upgraded CLAS with E_e = 11 GeV beam polarization asymmetry s₁ = amplitude of sin φ

V. Burkert, priv. comm.

Measurements of DVCS (+future plans) experiment $\mathcal{L}(unpol.)$ beam pol. p $s_{\ell p}$ $[\rm cm^2 s^{-1}]$ $[GeV^2]$ JLab CLAS 8.9 pol. $2 \cdot 10^{34}$ 11.7 pol. long. 10^{37} JLab Hall A 11.7pol. 10^{35} to 10^{38} JLab at 12 GeV 21.6 pol. 7 pol., e^{\pm} HERMES* 52.6 long. (?) ,, 52.6 transv. $3 \cdot 10^{32}$,, 52.6 pol., e^{\pm} 189 $1.3 \cdot 10^{32}$ μ^{\pm} pol. Compass (100 GeV) 10^{34} to 35ELIC 360 to 4200pol. ves $\leq 4.4 \cdot 10^{32}$ $2000 \text{ to } 10^4$ pol., e^+ eRHIC (ring) yes eRHIC (linac) $4000 \text{ to } 10^4$ 1 to $2 \cdot 10^{33}$ pol. yes H1, ZEUS* 10^{5} $\sigma_{\rm VCS}$,, 10^{5} $4.5 \cdot 10^{31}$ pol.. e^{\pm}

without detecting scattered proton

Conclusions: hard exclusive processes and Compass

- access to fundamental (and unknown) features of proton structure:
 - transverse profile of q, \bar{q} , g as a function of their longitudinal momentum fraction (proton structure in 3d)
 - orbital angular momentum: requires transverse target
- ► essential need to cover large kinematical region: Q² ≫ -t at given x_B, want lever arm in both Q² and t Compass: x_B typical of sea quarks/gluons
- range in $s_{\ell p}$ not covered by any existing or planned facility
- DVCS: beams with both charges essential asset for in-depth studies