The LHC machine-experiment interface (lecture 2)

Stefan Tapprogge

Academic Training CERN, April 19, 2005

Recap from yesterday

- Successful development (and experimental verification) of Standard Model of particles physics
- Strong indirect evidence that new physics exists beyond SM
 - → And still need to find the missing piece (Higgs)
- LHC (and experiments): multi-purpose facility
 - → Extremely broad range in physics topics
- Experimental signatures categories
 - → High p_T objects
 - → Reconstruction of (low mass) objects decays
 - → Leading particles

Contents

- LHC environment for experiments
- Description of the experiments
 - → ATLAS (A Toroidal LHC ApparatuS)
 - → CMS (Compact Muon Solenoid)
 - → ALICE (A Large I on Collider Experiment)
 - → LHCb (Large Hadron Collider beauty experiment)
 - → TOTEM ((Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC))
- Issues in operational conditions
- Commissioning of the experiments
 - → Goals, needs and expectations
- Physics reach in first period
- Yet another challenge: trigger
 - → If time permits ...
- Summary

Recap: LHC and experiments

Overall view of the LHC experiments.

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Cross-sections in pp collisions

- One of the major challenges
 - → I dentify (and keep) the interesting (and sometimes rare) events
 - → Example:

 $H \rightarrow \gamma \gamma (m_H \sim 120 \text{ GeV})$

→ Occurs only in 1 out of 10¹³ pp collisions

 However other processes with large cross-section also of interest

 \rightarrow σ (bb) ~ 0.2 mb !

uníver Sítắt⊗ maínz

Interaction rate in pp collisions

• Interaction rate

- Luminosity
 L = 10³⁴ cm⁻²s⁻¹
 = 10⁷ Hz/mb
- → σ(pp) = 80 mb
- → Rate 0.8 GHz
- Bunch crossing frequency 40 MHz
 - → 20 interactions per bunch crossing
- Filling of bunches

- → Only 2836 out of 3564 possible one are filled
- → Interaction/(filled crossing) ~ 25

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Challenge: Pile-Up Events

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Challenge: Pile-Up Events

- Example of golden Higgs channel
 → H → ZZ
- → 2e 2µ
 Need to understand detector first before able to exploit design luminosity

Experimental conditions: pp vs. PbPb

- Proton-proton collisions at $\sqrt{s} = 14 \text{ TeV}$
 - → Packets collide every 25 ns (40 MHz)
 - \rightarrow Luminosity up to 10³⁴ cm⁻² s⁻¹
 - → Total pp cross-section ~100 mb
 - Total interaction rate 1 GHz
 - About 20 inelastic events per crossing
 - → One pp event: 5-10 charged particles/unit of rapidity
- Pb-Pb collisions $\sqrt{s_{total}}$ = 1150 TeV
 - → Packets collide every 100 ns
 - \rightarrow Luminosity up to 10²⁷ cm⁻² s⁻¹
 - → Total Pb Pb cross-section: ~ 8 b
 - Total interaction rate: only 8 kHz
 - → One PbPb event: 2000-8000 charged particles/u.o.rap.

Detector design principles

• Fast response

- → Reduce impact of pile-up events
- → I dentify crossing of interest
- High granularity
 - Minimize probability to observe hit from pile-up event in detector segment (pp collisions)
 - highest multiplicities (HI collisions)
- Radiation resistant (pp collisions)
 - → Collisions produce a huge flux of particles
 - \rightarrow 10 years of LHC give up to 10¹⁷ n/cm² and up to 10⁷ Gy
- Precise vertexing
- Particle identification

Generic (collider) detector layout

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

ATLAS experiment

Assembly has started last year in the cavern

o http://atlaseye-webpub.web.cern.ch/atlaseye-webpub/web-sites/pages/UX15_webcams.htm

→ view as of yesterday

ATLAS experiment: tracking

TRT barrel support with all modules

- Si pixels
 - \rightarrow 0.8*10⁸ channels
- Si strips (SCT)
 - 6*10⁶ channels
- Transition radiation tracker (TRT)
 - 4*10⁵ channels

ATLAS experiment: calorimetry

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

ATLAS experiment: muon system

• Dimensions

uníver Sítắt⊛

- → Length46 m
- → Diameter 25 m
- Weight
 → 7000 f
 - → 7000 tons
- Total length of cables
 - → 3000 km
- Data volume per second
 - → 10000 Encyclopedia Britannica

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

CMS experiment

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

CMS assembly and cavern

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Magnet Architecture

ATLAS A Toroidal LHC ApparatuS

CMS Compact Muon Solenoid

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

LHCb Layout

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

LHCb: simulated event

LHCb challenge

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

LHCb: VELO detector

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

UNÍDET SÍTÁT⊛

mainz

ALICE Layout

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Central PbPb collision in ALICE

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

uníver Sítát⊛

main7

ALICE: former L3 magnet

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

uníder Sítát⊛ maínz

ALICE: Mounting TPC electrode

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

ALICE Zero-Degree Calorimeter

- Calorimeters at > 100 m from IP
 - 2 parts: for n and p \rightarrow
- Measure number N_{nucl} of spectator nucleons
 - determines collision \rightarrow geometry

ALICE / LHCb Magnets

ALICE → Polarity to be reversed 1-4 times per year

• LHCb

→ Polarity to be reversed at each fill (physics run)

TOTEM: experimental layout

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

TOTEM experiment

Roman Pot prototype

→ Successful test in SPS in 2004

• Details on interface detector – machine

Lecture by D. Macina on Friday

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Baseline coverage

• (identified) particle measurements:

→ $-2.5 \le \eta \le 4$ via ATLAS/CMS, LHCb and ALICE

Baseline coverage (cont'd)

Charged particle multiplicities (energy flow)

→ $|\eta| \le 7$ via TOTEM/ALICE ($|\eta| \le 5$ via ATLAS/CMS)

- Leading particles
 - → Protons via TOTEM (RP), neutrons via ALICE (ZDC)

LHC operational aspects

• LHC: facility with very broad physics programme

- → Different physics goals → sometimes different running/operational conditions
- → Global optimization needed
 - Similar to allocation of test beam time in fixed target
 - Contrast to Tevatron / LEP :
 - \rightarrow Maximize integrated luminosity (and \sqrt{s} for LEP as well)
- Some 'dimensions' of operational parameter space
 - → Particle species
 - Number of bunches
 - → Beam energy
 - \rightarrow Magnitude of focusing (β^* value)
 - → Luminosity
 - → Polarities etc. of experimental magnets

Naïve view of machine start-up

• More discussion in R. Assmann's lecture tomorrow

Several steps

- → Single beam running
- → Establish collisions and pilot (physics) run
 - Small number of bunches involved
- → Regular physics runs (optimize for luminosity)
- All of the above are useful for the experiments
 - → Single beam run to be used for
 - Timing and synchronisation of experiments
 - Studies of backgrounds (vacuum quality, beam gas, ...)
 - Start to 'shake' detectors

• Clear wish to move towards stable, reproducable operation as soon as possible

Examples for experiments' wishes

• ATLAS/CMS

- \rightarrow Optimized for pp luminosities of 10³⁴ cm⁻² s⁻¹
- To exploit initial physics potential, aim for luminosities of = 10³³ cm⁻² s⁻¹ soon

• And minimize number of pile-up events

→ Initial lower luminosities useful to understand properties of minimum bias pp interactions

• LHCb

→ Optimized for L = $2*10^{32}$ cm⁻² s⁻¹ and 25 ns spacing

• On average 0.4 interactions per bunch crossing

- → Want to achieve this luminosity also with lower initial currents (change focusing in I R8 β^* ?)
- General comment: ALICE, LHCb
 - Lower luminosities: more sensitive to machine related background
 Often scales with beam current

Examples for experiments' wishes

• ALICE: pp running as reference measurement

→ Limitations on luminosities

- Possible radiation damage to detectors L < 10³² cm⁻² s⁻¹
- Central detector to be operated $L < 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
- → Operational values
 - $O L = 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$ initially (only one event per TPC readout)
 - $O L = 2-5*10^{30} \text{ cm}^{-2} \text{ s}^{-1} \text{ later}$ (20-50 events per TPC readout)
- → Tuning of luminosity via beam displacement or β^* ?
- → Running at $\sqrt{s} = 5.5$ TeV (direct comparison with PbPb)

• TOTEM

→ Need special machine optics configuration for measurement of total cross-section ('large β^* ')

• Measure almost all scattered protons (produced under small angles)

→ Running at $\sqrt{s} = 8$ TeV (ρ parameter) and $\sqrt{s} = 1.8$ TeV (comparison to Tevatron)

TOTEM running scenarios

Running scenarios	s _{tot} , low t elastic scattering, minimum bias	Diffractive physics large p _T phenomena	Large t elastics scattering
β*(m)	1540	1540	18
N _b	43	156	2808
Half crossing angle [µrad]	0	0	160
e _N [µrad rad]	1	1 (3.75)	3.75
l _b	0.3 10 ¹¹	0.6 10 ¹¹ (1.15 10 ¹¹)	1.15 10 ¹¹
L [cm ⁻² s ⁻¹]	1.6 10 ²⁸	2.4 10 ²⁹	3.6 10 ³²

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Operation in pp collision mode

- Aim to get to stable luminosity running (L_{peak} = 10³³ cm⁻² s⁻¹) soon
 - Stability (integrated luminosity recorded) is what counts
 - → Go to design luminosity to exploit full phase space accessible and statistical precision
- Main message: due to larger √s (compared to Tevatron) LHC has potential for early discoveries
 → That's why the SSC (history now) had √s = 40 TeV
- Bunch spacing: 25 ns vs. 75 ns
 - → For same L_{peak} factor of 3 more pile-up events @ 75 ns o i.e. at L_{peak} =3*10³³ cm⁻² s⁻¹ same conditions as for design luminosity with spacing of 25 ns

Commissioning of experiments

- Commissioning of machine
 - → See R. Assmann's lecture
- Need to understand precisely the functioning of the experiments
 - → How to get from charges/voltages to the Higgs mass
- Learn to smoothly operate the detectors
- I dentify and solve initial problematic issues
- Calibration/alignment at various levels (starts before collisions)
 - → Electronics chain stand-alone, mechanical aligment
 - → Charge/light injection to simulate particles
 - → Physics events
- Various ambitious goals
 - → Electromagnetic energy scale to 0.1% (or even better to 0.02%)

Initial physics reach: Higgs

Example Discovery Reach (5o): ATLAS +CMS • Full mass range

covered → With 10 fb⁻¹ per experiment

- → And not all channels shown
- With good detector understanding
 - → Required luminosity for smaller masses not too large

SIAR

Initial physics reach: SUSY

Trigger (DAQ) challenge

- Extremely wide range of cross-sections
 - Total pp cross-section
 - → ...
 - → W/Z production
 - → ...
 - → Higgs production
- Very high selectivity needed 'on-line'
 - → To keep rate events of interest
 - accept only 1 in every
 ~ 10⁷ interactions

Trigger/DAQ system view

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

univer

Sítất⊛

Overview T/DAQ parameters

ATLAS	No.Levels Trigger	Level-1 Rate (Hz)	Event Size (Byte)	Readout Bandw.(GB/s)	Filter Out MB/s (Event/s)
CMS	3	10 ⁵ 2 10 ³	10 ⁶	10	100 (10 ²)
	2	10 ⁵	10 ⁶	100	100 (10 ²)
LHCb	3 LV-0 LV-1	10 ⁶ 4 10 ⁴	2x10⁵	4	40 (2x10 ²)
	4 Pp-F p-p	^{pp} 500 10 ³	5x10 ⁷ 2x10 ⁶	5	1250 (10 ²) 200 (10 ²)

Academic Training Lecture, CERN, Geneva April. 18th-19th, 2005

Trigger: always remember this!

uníver Sítát⊛

Summary of today

• LHC

→ challenging conditions for (precision) measurements
 ○ High luminosity often need → pile-up events in pp

Detectors

- optimized for various categories of signatures
 non-exclusive
- → very complex systems
 - up to 10⁸ electronic channels, huge size, ...
- → Assembly in progress (construction often finished)
- → Task ahead: commissioning

Operation

- → LHC is more like a facility
 - Like sharing of beam time in fixed target programme
- → Optimisation between different running needs TBD

Summary of Monday and Tuesday

- Huge and very diverse LHC physics potential
 - Impact on our knowledge about nature's secrets in the new century / millennium
- Need excellent machine and detectors to exploit this potential
 - → Machine and experiments are NOT independent
 - → Commissioning will take some time ...

• Now let's move on towards real interface issues

- → Tomorrow: Ralph Assmann on the LHC machine
- → Thursday: Emmanuel Tsesmelis on the experimental caverns
- → Friday: Daniela Macina on interface