
Accelerators at CERN
• Early times (SC, PS, PS improvement)
• Expansion into France (ISR, SPS)
• Next steps (antiprotons, LEP, LHC)
• Future options for CERN
• What we learnt

This lecture is dedicated to Mervyn Hine, distinguished accelerator physicist and 
man of vision, who made eminent contributions to the build-up of the accelerator 
complex at CERN. He passed away in April 2004.
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Evolution of Accelerator Park
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The Starting Conditions at CERN
• 1st Meeting of Provisional CERN Council May 1952 >> 

Creation of Study Groups:
-- Synchro-cyclotron (Cornelis Bakker, Amsterdam)
-- “Cosmotron 3>>10-20 GeV” (Odd Dahl, Bergen)

visited BNL in August 1952 and learned about new
principle for focusing: Alternating-Gradient (AG)

• Council October 1952 decided on their proposal
-- abandon scaled-up weak-focusing “Cosmotron”>> 

go for  30 GeV PS  based on AG for ≈ same cost. 
• Subsequent work >>  balancing of 

-- size of vacuum chamber and magnets, i.e. cost
-- sensitivity to B-field inhomogeneity and alignment errors

e.g Weight of magnets (t): 800 (53/1), 10000(53/4),3300(54/3), 3800(now)    
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The Starting Conditions: International Context
cf. US and CPS proposal cf. EU and CPS proposal
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Choice of new focusing principle >> bold step >>

“For awful gamble stands AG but if it works or not we’ll see (R.Peierls)

>> result:  CERN starts level with US and ahead of other EU

Others did not trust AG: US: ZGS/ANL; UK: Nimrod/RAL; JINR: S.P.tron

CERN Academic Training 13 September 2004, Kurt Hübner



CERN 600 MeV Synchro-cyclotron
• Provisional Council October 1952: 

decided to go ahead in ║ with CPS for
-- early start of meson physics  
-- training for accelerator technology

• Construction : 1955 >> First beam: 
1957 (immediately at max. energy)

• ISOLDE: 1964 shift HEP >> NP
• Stop: end of 1990  

ISOLDE moved to CPS Booster (PSB)
Machine (radio-active) still in Bld. 300 !

Comment: its progress was reassuring for 
Council and good physics was done

but tied physics community in the 50’s 
>>   disservice to PS experimental 
programme (which started only 1961 
about 2 years after PS start-up)
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CERN 26 GeV Proton Synchrotron (CPS)
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• Oct. 53: first PS group to GE
• May 1954: ground breaking
• Design: AG combined function

(dipole + quad),   2π R = 628 m
• Dec. 1959: first beam to 28 GeV
• Drama: no beam line equipment,

rudimentary detectors
• Learnt : beam physics with AG,

producing precise magnets
precise alignment
rf control    
management of large project



Improvement Programme for CPS
• Extraction of proton beam
Fast: many or all bunches in 1 turn
ν-horn 61,mov. kicker 63, FAK 69, 
Slow: spill over many turns (1963)
• Increase of average current
-New power supply and rf for CPS 

for 2x repetition rate
-New injector: NSpch at PS inj. ~ βγ2

4-ring 800 MeV booster synchrotron 
inserted:L1/PSB (Constr.68-72) /CPS
- Linac 2 + new p-source

Constr.73-78, replacing Linac 1 ↓
• Ion programme : L1 (d,α, O, S);
New Pb linac: Constr. 90-94 by coll.

Fast extracted beam 25 GeV
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Evolution of CPS and PSB Intensity
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final PS average 

for WA ν

providing

2 x 1013 p/s

(design:

5-8 x 109 p/s )
Linac 2 on

2.2 x 1011 in mid 60

≈ 1 x 1010 design



PS Complex Improvement

D.J.Simon EPAC 96

Learnt: - to deal with high intensity beams and ions up to Pb

- low-loss fast and slow CPS ejection (internal targets removed in 1980)

- merge bunches by using more than one rf system for p production

- refined computer control allowing for flexibility in supercycles
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Intersecting Storage Rings (ISR)
“The Leap in the Hadron Collider Area”

pp collider up to 31.4 GeV /beam
2π R = 942 m, injection from CPS
Combined-function lattice, large ∆p/p
8 Intersection points (5 used for exp.)
Constr.: 66-70, Operated:71-83

L= 4 x 1030 (des.) to 1.4 x 1032 cm-2s-1, 
dc proton current: up to 40 A (57A)
Notable features:
- Ultra-high vacuum and ion clearing
- Low-impedance vacuum envelope
- High-stability of power supplies 

(10-7 ripple tolerance on dipoles)
- Superconducting low-β insertion

(L  increased by 6.5)
but experiments not fully exploiting it.

View of intersection point 5 in 1974
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Selected ISR Achievements
Non-destructive beam diagnostics of 
coasting beams with Schottky noise

For monitoring particle distribution
- <p>, ∆p, density f(p)

- extrema of betatron tunes in stack, 
rms amplitude and tune 
at particular orbit
by measuring fast and slow wave
signals (n +- Q) f rev

Example: Longitudinal Schottky scan
(dN/dp)1/2 = f (p)
at 10, 15, 19 A proton current

J.Borer et al., HEACC (1974) 53
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Selected ISR Achievements
Ultra-high vacuum technologyResurrection of stochastic cooling and 

experimental test 
(theory: van der Meer 1968)

Evolution of average pressure: 
design nTorr, at end pTorr

Measurement of relative effective
beam height with cooling on and off 

K.Johnsen, CERN 84-13 (1984)

P.Bramham et al. NIM 125(1975) 201

Result: physics runs up to 60 h, beam 
lifetime of about 3 to 4 months

Use in ISR: e.g. p beam kept for 345h
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Super Proton Synchrotron (SPS)
Separated function, classical magnets
2πR = 6912 m  (11 x PS), 
2 big exper.halls (West, North)
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Concept: 300 GeV in  early 60’s
Site: final Prevessin 1970 > use PS
Construction: 1971- 1976
E= 450 GeV p, 158 GeV/u Pb (1986)
N(p)= 4.5 x 1013 /cycle (4.5 x design)

We learnt: 
- deep tunneling (∆= 2 cm / 1.2km)
- direct powering from grid with

reactive power compensation*)
- rf acceleration with TW structure
- computer control from start*)
- start experiments with accelerator

*) at smaller scale already at PS Booster

Neutrino beam to Gran Sasso (730km) 
under construction, operation 2006 →
LEP and LHC injector



Search for the step after ISR/SPS
Investigated in 74 – 78:
CHEEP: 27GeV e- ↔270 GeV p

in SPS  with new e- ring in SPS
LSR/SISR : 400 GeV pp collider
MISR: 60 GeV p storage ring (ISR 

magnets) ↔ SPS
SCISR: 120 GeV sc p rings in ISR
US: FNAL pp study (stop 78)
ISABELLE pp constr.78-83 (stop)

Winners: (Decision/First collisions)
i) pp in SPS (1978 / 1981)

medium-term: “quick and dirty”
ii) e+e- in LEP (1981/ 1989)

long-term: “flagship”

ICE test ring demonstrated 1978
- stochastic cooling in longitudinal 

phase space, simultaneous cooling 
in all 3 dimensions

- lower limit τ (p) > 32 h ≡ O(9) up!

Example of p-distribution in ICE 
before/after stochastic cooling 
dN/dp = f (p)

before

after

CERN Annual Report 1978
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The pp Programme
- Antiproton Accumulator (AA)
3.5 GeV/c storage ring, 2πR=  157m
Built 79-80 (AA), stochastic cooling 
- New beam transport lines
- SPS Modifications:
Vacuum: 200 nTorr (des.)>> 2 nTorr
Low-β insertions for UA1 and UA2
RF modifications (TW,add 100 MHz)
Electrostatic deflectors for separating 

the 6 bunches/beam in 9 points
- Antiproton Collector (AC) +       
3.5 GeV/c storage ring, 2πR=182m, 
Added in 86, operational in 1987
for 3D precooling,stack cooled in AA
>> Overall gain of ≈ 6 in dN/dt

Accelerator layout                       
(new elements  >> in bold)

-AA+AC peak performance:
d(p) ↑ = 4 x 109, dN/dt = 1012 p/d
≈ two fills of SPS/d  (Tcoast=10h)
>> little reserve >> cliff-hanging !
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Energy (GeV): 273 (82-85)/315(87-91)
Operation: risk of loss of stack (1d of p
prod.!) or of beam during acceleration
Learnt: b-b effect with bunched beams
Intra-beam scattering in bunches
Large 4π detectors

- LEAR p buffer ring and 
decelerator in PS South Hall

Built: 80-82;  Operation: 82-96
T= 1.2 GeV to 5 MeV
Ultra-slow ejection: spill for <10 h 
Stochastic and electron cooling

- Antiproton Decelerator (AD)    
modif.AC: p buffer and decelerator
Built: 98-00; Operation: 00 →
T = 2.7 GeV to 5.3 MeV
Stochastic and electron cooling
Extracted beam is further decelerated 
in RFQD down to T= 120-10 keV

pp Performance SPS Antiproton Programme

G.Brianti, Eur.Phys.J.C 34 (2004) 15

AC start ↓



Large Electron Positron Ring (LEP)

Technical challenges: Vacuum:

Dipole magnets: low B > concrete-
steel magnets (steel filling 27%)  
> B reproducible, cheap and rigid 

RF system: 350 MHz Cu cavities  
1.5 MV/m, storage cavities for   
Prf ↓ by 1.4; 1 MW tubes.             
LEP 1 (Z0): Vrf = 0.4 GV 

Design : 1975 – 1981 with iterations

1977 1978 1979 1984

E (GeV) 100 70 86 55

2πR (km) 52 22 31 27

Experim. 8 8 8 4

Prf (MW) 109 74 96 16
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Choice of site: PS/SPS as injector

Construction: 1982 – 1989

Operation: 89-95 (Z0), 95-00(> Z0), 
1997 W-threshold



Upgrading to LEP 2 
For Vrf ~γ4 >> massive increase for 
reaching W-pairs and beyond required:

- Superconducting (sc) cavities: start 
study in 79,  20 Nb bulk cavities 
ordered 89, then switch to Nb-film
Operated at 350 MHz and 4.5 K;
Successful transfer of technology 
developed at CERN to industry

- rf power: 2 new rf galleries + tubes
- Cryogenic system : transfer lines and

refrigerators 4 x (6 → 12 kW)
- beam focusing: 10 sc quads for the

four low beta insertions 

Final rf configuration:

272 Nb-film cav. 7.5 MV/m 
nominal 6 MV/m

16 Nb cav.        4.5 MV/m
56 Cu cav.         1 MV/m
490 m sc active length        
43 Klystrons
Vrf = 3.6 GV total voltage (sc+Cu) 
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LEP Achievements

Performance:  Emax = 104.5 GeV
206 pb-1 at Z0

784 pb-1 at or above W-threshold
from 12 pb-1 (90) >> 254 pb-1 (99)
Potential: +94 sc.cav >> 111 GeV

Learnt to master:
- large scale excavation (tunnel/halls)
- large scale sc rf and cryo-system
- operation with strong syn.rad and 

radiation damping of beams
- precise beam energy calibration:

error for Mw = 10 MeV by beam
Learnt to deal with perturbations by:
- earth currents by F-trains (1.5 kV, 

dc) >> ∆B/B ≈ 2 x 10-4 / 12h
- earth tides/rain  changing 2πR by ≈

1mm ≡ 10 MeV in beam energy
- beer bottles in the vacuum chamber
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Large Hadron Collider (LHC)

Parameters:
Proton beam energy: 7 TeV
L = 1.0 x 1034 cm-2 s-1

Pb ion beam energy : 2.8 TeV/u
L = 1.0 x 1027 cm-2 s-1

Installed in LEP tunnel

Chronology:
Design: 83 – 94  

(considered since mid 70’s)
Approval: 
- 94 (two-stages 5 → 7TeV)
- 96 (single stage 7 TeV) with   

substantial NMS contributions
Operation: 2007 →

Dipole magnet: B = 8.3 T, 12 kA,
Nb-Ti sc 6-7µm filaments > cables,
1.9 K He II cooling, ∆x = 194 mm b-b
cold mass: L = 16.5 m overall, 28 t
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LHC Challenges
- Beam dynamics:
b-b effects in IP and 120 parasitic 

crossings near IP ( 2808 bunches)
electron-cloud effects: 25 ns bunch 

spacing + beam-induced multi-pactor
> dense e-clouds >
i) heat load on beam screen
ii) beam instabilities

Remedies: sawtooth in chamber, coating, 
scrubbing with beam.

- Dipoles : (similar problems for quads)
cable production,
quench protection Wem=7 MJ + low T > 

low heat capacity of cable , 
strong forces (2MN/m per coil quadrant)

- Cryogenics: 
upgrade 4.5 > 1.9 K LEP refrigerators, 
plants and cryo-lines for superfluid He, 
deal with quenches > rapid cool-down 

- Vacuum: for 100 h beam lifetime > 
good pumping by 1.9 K cold tube >  

protected from  syn.rad 0.2 W/m by 
beam screen →

- Collimation and beam dumping
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Accelerator Options after LHC
• Hadron colliders:
Upgrade LHC luminosity 1034 → 1035

Upgrade LHC energy 14 → 28 TeV ?
VLHC ( 40/200 TeV phase I/II)

Not here, CERN participates 

• Lepton colliders:
ILC (0.5 – 0.8/1.0 TeV)

Consensus: the “next” project
Not here? CERN participates?

CLIC (0.5 – 3 (5?) TeV)
future flagship?

µ+µ- collider in TeV class ??

• Advanced neutrino beams
Superbeam: νµ but not very pure

uses ISR tunnel
Neutrino Factories:
- Based on β decay in ring: νe 

uses CPS and SPS
- Based on µ decay in ring: νe νµ

Comment: all have synergies with
ISOLDE, EURISOL, and neutron-
spallation source;
rather decoupled from LHC/ILC 
results?  
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LHC upgrade
Phase 1: hardware modifications
Increase focusing in IP                      

(β* = 0.5 →0.25m)
Increase nb and further Nb

L → 5-7 x 1034 

Requires new insertion quadrupoles
(Nb3Sn  => VLHC technology)

Phase 2: energy increase => major 
upheaval and vigorous R&D in sc

Change magnets, dipoles 8 →15 T
SPS with sc magnets for Einj= 1TeV
Modify injectors for denser beams
Beam energy: 7 → 12 TeV
Operational: 2020? Worthwhile ??

For increase of luminosity
L = nb frev Nb

2 F / ( 4π σ*)
act on
- nb – number of bunches per beam
- Nb – number of protons per bunch
- σ*- beam size at IP (σx = σy)
- F – 1/ (1+ (θ.σz /2σ*)2 )1/2

Staged approach (simplified):
(Details in O.Brünig et al. LHC Project Report 626)

Phase 0: IP layout changes for θ ↑
Collide beams only in IP1,5
Increase Nb to b-b limit
L = 1 x 1034 → 2-3 x 1034 
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International Linear Collider (ILC)

Ecm = 0.5 to 0.8 (1) TeV
L = 3 to 6 x 1034 cm-2 s-1

R&D by DESY, KEK, SLAC ….
Recent recommendation by ITRP:
sc Nb accelerating structures:
1.3 GHz, 2K >>   25-35 MV/m >> 

33 km overall length
Next step: set up Central Team
Challenges:
Long damping rings: 2 x 17 km
Non-conventional e+ production
Final focus for σ* x,y ≈ 400/3 nm
Up to 20 MW beam power

TESLA Layout
R.Brinkmann, HEP03,2003
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Compact Linear Collider (CLIC)
CLIC tunnel cross-section

CLIC challenges:

-- 172/150 MV/m (without/with beam)

-- Generation and control of drive beam

-- Demonstration: needs big unit

Very compact (30 GHz, 150 MV/m), 
Short ( 0.5/3 TeV => 10/33 km) 
Main beam: 0.009 to 1.5 TeV
beam pulse:  1 A pulse in 102 ns
Drive beam: 2 to 0.2 GeV
beam pulse:  150 A  in 130 ns

Active R&D by CLIC collaboration to 
validate concept by the time LHC 
results available
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Production mechanisms for Neutrino Beams

ν from π and K mesons (EU, JA, US)          e+ νe νµ process b)
p → target → π+ (K+)        → µ+ +    νµ process a)

a) Used at present and medium term (KEK, FNAL, CERN)
b) Proposed for ν-factory based on µ storage rings; Issues:

- proton beam power up to 4 MW (p-accelerator, target)
- ionisation cooling of µ beams (test proposed)
- rapid µ acceleration (c τµ = 658m) 

ν from beta-decay (studied in EU) : e.g.
6 He ++ → 6 Li ++  e- νe 

proposed for ν-factory based on storing beta emitters at
high energy (γ = 100) in a storage ring ; Issues:
- generation of beta emitters (ISOL technique)
- losses during acceleration (PS,SPS) => contamination

Common issues: handling of hot target & comp., authorisations
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Neutrino beam from µ –decay

50 GeV

1014 µ/s

11 GeV

1021 µ/a

1016 p/s

Total Vrf = 15 GV  

P.Gruber et al., Study of a European Neutrino Factory Complex,CERN/PS/2002-080(PP)
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Electron Neutrino beam from β –decay

AIM:  provide beams of electron (anti) neutrinos by decay of beta active ions.
Idea: P.Zucchelli, Phys.Lett.B, 532 (2002)166

Neutrino 
Source 

Decay 
Ring

Ion production 
ISOL target &   

Ion source

Proton Driver 
SPL

Decay ring

Bρ = 1500 Tm 
B = 5 T           
C = 7000 m     
Lss = 2500 m 
6He:   γ = 150 
18Ne:  γ = 60

SPS

Acceleration to 
medium energy 
Bunching ring     

and RCS

PS

Acceleration to final energy

PS & SPS

Experiment

Ion acceleration 
Linac

Beam preparation 
ECR pulsed

M.Benedikt/2004New: similar to EURISOL  (EU Study for Nuclear Physics)
Existing + additions 

New
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What we learnt
• Projects have very long lead time and will become more global
• Exploit fully existing facilities, also by upgrading or re-use but
• Stop facilities when not leading-edge
• Avoid exaggerated competition leading to rush decisions

• Go for projects, don’t fool around with uncommitted R&D
• Work on operation/construction & on future in parallel
• Work in close collaboration with users from inception
• Participate actively in global R&D >> otherwise others choose your future

• Full-scale tests of hardware/ideas whenever possible
• Master the technology yourself before order to industry
• Young staff >> biggest asset of CERN >> teach them and work with them
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