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Overview of the contents

1st part Review of the process of learning from data
Mainly based on
• “From observations to hypotheses: Probabilistic

reasoning versus falsificationism and its statistical
variations” (Vulcano 2004, physics/0412148)

• Chapter 1 of “Bayesian reasoning in high energy
physics. Principles and applications” ( CERN Yellow
Report 99-03)

2nd part Review of the probability and ‘direct probability’
problems, including ‘propagation of uncertainties.
Partially covered in
• First 3 sections of Chapter 3 of YR 99-03
• Chapter 4 of YR 99-03
• "Asymmetric uncertainties: sources, treatment and

possible dangers" (physics/0403086)
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Overview of the contents

3th part Probabilistic inference and applications to HEP
Much material and references in my web page. In particular,
I recommend a quite concise review
• "Bayesian inference in processing experimental data:

principles and basic applications", Rep.Progr.Phys. 66
(2003)1383 [physics/0304102]

For a more extensive treatment:,
• “Bayesian reasoning in data analysis – A critical

introduction”, World Scientific Publishing, 2003
(CERN Yellow Report 99-03 updated and ≈ doubled in
contents)
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Status report from previous lecture

Starting point for probabilistic reasoning

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]
4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

That includes ’direct probability problems’ (propagation of
uncertainties) and also probabilistic inference (or ’inverse
probability’), based on the symmetric reconditioning formula,
that, though under several variations, goes under the name of
Bayes theorem.
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The Bayes ‘formulae’

Main link between conditional probabilities of effects and
conditional probabilities of hypotheses.

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)

From which different ways to write Bayes theorem follow:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj) ∗ ∗ ∗

P (Hj |Ei)

P (Hk |Ei)
=

P (Ei |Hj)

P (Ei |Hk)
· P (Hj)

P (Hk)
∗ ∗ ∗
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And their sequential use

The posterior becomes the prior of the next inference

For conditionally independent Ei:

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

P (Hj |data) ∝ P (data1 |Hj) · P (data2 |Hj) · . . . · P0(Hj)

Similarly, for the Bayes theorem written in terms of odd ratios:

P (Hj |data)

P (Hk |data)
=

P (data1 |Hj)

P (data1 |Hk)
· P (data2 |Hj)

P (data2 |Hk)
· . . . · P (Hj)

P (Hk)

(And, obviously, if the data sets are not independent, one has to apply the
chain rule P (A, B C, . . .) = P (A) · P (B |A) · P (C |A, B) . . .)
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Today

• More on model comparison
• Parametric inference
• Some applications
→ Goal is to to allow you to read more technical literature

understanding the basis of the reasoning and, most of all,
without being afraid of the terms ‘subjective’ or ’Bayesian’
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Solution of the AIDS test problem

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

We miss something: P◦(HIV) and P (HIV): Yes! We need some
input from our best knowledge of the problem. Let us take
P◦(HIV) = 1/600 and P (HIV) ≈ 1 (the result is rather stable
against reasonable variations of the inputs!)

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!

• Bayes factor is usually much more inter-subjective, and it is
often considered an ‘objective’ way to report how much the
data favor each hypothesis.
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The hidden uniform

What was the mistake of people saying P (HIV |Pos) = 0.2?

We can easily check that this is due to have set P◦(HIV)

P (HIV)
= 1,

that, hopefully, does not apply for a randomly selected Italian.
• This is typical in arbitrary inversions, and often also in

frequentistic prescriptions that are used by the practitioners
to form their confidence on something:

→ “absence of priors” means in most times uniform priors over
the all possible hypotheses

• but they criticize the Bayesian approach because it takes
into account priors explicitly !

Better methods based on ‘sand’ than methods based on nothing!
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The three models example

Choose among H1, H2 and H3 having observed x = 3:

In case of ‘likelihoods’ given by
pdf’s, the same formulae apply:
“P (data |Hj)”←→ “f(data |Hj)”.

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1
H3

H2

xm x

fHxÈHiL

BFj,k = f(x=3 |Hj)
f(x=3 |Hk)

BF2,1 = 18, BF3,1 = 25 and BF3,2 = 1.4→ data favor model H3

(as we can see from figure!), but if we want to state how much
we believe to each model we need to ‘filter’ them with priors.

Assuming the three models initially equally likely, we get final
probabilities of 2.3%, 41% and 57% for the three models.
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Comparing ‘complex’ hypotheses
In the case of ‘simple hypotheses’, i.e. hypotheses that do not
contain free parameters, that was all!
Complex hypotheses require some more thinking:
Let us consider, for example, modelsMA characterized by nA

parameters α, andMB with nB parameters β.
Bayes factor P (Data |MA,I)

P (Data |MB ,I)
, but which set of parameters do we

have to choose for the comparison?
• The ‘best fit’ one? NO! This would be correct if the models

came with that fixed set of parameters!
• We have to take into account all possible sets of parameters

that are that each model can take a priori. And probability
theory teaches us how to do it:

P (Data |MA, I) =

∫

P (Data |MA,α, I) f0(α | I) dα

.(An extension of the ‘decomposition rule’ )
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Model dependence based on the integrated likelihood

Complex model Bayes factor:

P (Data |MA, I)

P (Data |MB , I)
=

∫

P (Data |MA,α, I) f0(α | I) dα
∫

P (Data |MB ,β, I) f0(β | I) dβ

=

∫

LA(α; Data) f0(α) dα
∫

LB(β; Data) f0(β) dβ
,

where f0(α | I) and f0(β | I) are the parameter priors.

The
inference depends, then, on the integrated likelihood
(“evidence”)

∫

LM(θ; Data) f0(θ) dθ ,

whereM and θ stand for the generic model and its parameters.
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Automatic ‘Ockham Razor’

What enters the Bayes factor is the integrated likelihood:
∫

LM(θ; Data) f0(θ) dθ

Convolution of likelihood and parameter prior
Note: LM(θ; Data) has, by definition, a maximum around the
maximum likelihood point θML,

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8
10

M1

Higher ML (→ ‘smaller χ2’)
−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8
10

M2

smaller ML (→ ‘larger χ2’)
M2 is ‘preferred from data’!

Automatic ‘Ockham razor’: Simpler models are preferred.
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Further references

For an example of application of complex model comparison and
resulting ‘Automatic Ockham Razor’, see e.g.
• P. Astone, S. D’Antonio and GdA, “Bayesian model

comparison applied to the Explorer-Nautilus 2001
coincidence data”, Class. Quant. Grav. 20 (2003) 769
[gr-qc/0304096].

Or Google Bayesian Ockham razor . . .

And, by the way, since you have already your browser open
on Google, you might want to search for “Bayesian”, and
find out that, contrary to most physicists, they are not much
afraid of this word. . .
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Are Bayesians ‘smart’ and ‘brilliant’?
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Slide addedd after the lecture: search of 25 Feb 05, 13:01
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

• p-values (e.g. ‘χ2 tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].

• But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
impossible.

• Why do frequentistic test often work? → Slides
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Parametric inference

→ Choose a model and infer its parameter(s).
Bayes theorem for continuous variables has following structure

f(θ |data) ∝ f(data | θ) f0(θ)

First application: inferring Bernoulli p from n trials with x
successes (taking a uniform prior for p)

f(p |x, n,B) =
f(x | Bn,p) f◦(p)

∫ 1
0 f(x | Bn,p) f◦(p) dp

=

n!
(n−x)! x! px (1− p)n−x f◦(p)

∫ 1
0

n!
(n−x)! x! px (1− p)n−x f◦(p) dp

=
px (1− p)n−x

∫ 1
0 px (1− p)n−x dp

,
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Inferring the Binomial p

f(p |x, n,B) = (n+1)!
x! (n−x)! px (1− p)n−x ,
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Inferring the Binomial p

f(p |x, n,B) = (n+1)!
x! (n−x)! px (1− p)n−x ,

E(p) =
x + 1

n + 2
Laplace’s rule of successions

Var(p) =
(x + 1)(n− x + 1)

(n + 3)(n + 2)2

= E(p) (1− E(p))
1

n + 3
.
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Interpretation of E(p)

Interpretation of E(p). Think at any future event Ei>n, thinking
that, if we were sure of p then our confidence on Ei>n will be
exactly p, i.e. P (Ei | p) = p. (see comments on “physical
probability” in lecture 3)
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But we are uncertain about p.
How much should we believe Ei>n?.

P (Ei>n |x, n,B) =

∫ 1

0
P (Ei | p) f(p |x, n,B) dp

=

∫ 1

0
p f(p |x, n,B) dp

= E(p)

=
x + 1

n + 2
(for uniform prior) .

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.20/38



From relative frequencies to probabilities

E(p) =
x + 1

n + 2
Laplace’s rule of successions

Var(p) = E(p) (1− E(p))
1

n + 3
.

For ‘large’ n, x and n− x (in practice ≥ O(10) is enough for
many practical purposes), asymptotic behaviors of f(p):

E(p) ≈ pm =
x

n
[with pm mode of f(p)]

σp ≈
√

pm (1− pm)

n
−−−→
n→∞

0

p ∼ N (pm, σp) .

Under these conditions the frequentistic “definition” (evaluation
rule!) of probability (x/n) is recovered.
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Further info about inferring p

→ “Inferring the success parameter p of a binomial model from
small samples affected by background”, physics/0412069.
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Estimating Poisson λ

It becomes now an exercise, at least using a uniform prior on λ
(not appropriate when searching for rare processes!)

f(λ |x,P) =
λx e−λ

x! f◦(λ)
∫∞
0

λx e−λ

x! f◦(λ) dλ
.

f(λ |x,P) =
λx e−λ

x!

F (λ |x,P) = 1− e−λ

(

x
∑

n=0

λn

n!

)

,

Expected value, variance and mode of the probability
distribution are

E(λ) = x + 1,

Var(λ) = x + 1,

λm = x .
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Some examples of f(λ)

For ‘large’ x f(λ) becomes Gaussian with expected value x and
standard deviation √x.

The difference between most probable λ and its expected
value for small x is due to the asymmetry of f(λ).
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case of observed x = 0

1 - 

1 2 3

95%

f( )

f(λ |x = 0,P) = e−λ,

F (λ |x = 0,P) = 1− e−λ,

λ < 3 at 95% probability .

But not just because f(x = 0 | Pλ=3)= 0.05! In this case it works by chance
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Adding background of expected intensity

Two independent Poisson processes, the signal one of intensity
rS and the background one of rB :
r = rS + rB → λ = λS + λB.
If λB is somehow known (though uncertain) we can infer λS from
the observed numbers of events x:

f(λS |x, λB◦
) =

e−(λB◦
+λS) (λB◦

+ λS)x f◦(λS)
∫∞
0 e−(λB◦

+λS) (λB◦
+ λS)x f◦(λS) dλS

.

f(λS |x, λB◦
) =

e−λS (λB◦
+ λS)x

x!
∑x

n=0
λn

B◦

n!

,

F (λS |x, λB◦
) = 1− e−λS

∑x
n=0

(λB◦
+λS)n

n!
∑x

n=0
λn

B◦

n!

.

(If we are uncertain about the background we model the uncertainty with
f(λB), and apply once more probability rules, as we shall see later)
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The Gaussian model
Gaussian case left on purpose at the end, because I find that it
can be dis-educative
• tendency to believe that everything must be so nicely

bell-shaped
• methods only valid for Gaussian are sometime acritically

used elsewhere
• (I have even found teachers explaining that the standard

deviation is ‘the 68% thing‘. . . )

→ See slides:
- simple inference with very vague prior
- inference with ’narrow’ prior: → combinations
- predictive distributions
- measuring at the edge of the physical region
- introducing systematics
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General probabilistic inference→ simple fit formulae

How several ‘standard’ methods can be recovered under well
defined assumptions :

→ Slides
But be careful: simplified methods fail in case of not trivial χ2

curves, etc.
• For a detailed example, see Chapter 8 of book “Bayesian

Reasoning in Data Analysis”, (World Scientific, 2003)
• containing also the rigorous treatment of linear fit with errors

on both axes (and hints for non-linear fit).
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General probabilistic inference→ simple fit formulae

How several ‘standard’ methods can be recovered under well
defined assumptions , as also known to Fermi, I have found out
recently:

“In my thesis I had to find the best 3-parameter fit to my data and
the errors of those parameters in order to get the 3 phase shifts and
their errors. Fermi showed me a simple analytic method. At the
same time other physicists were using and publishing other
cumbersome methods. Also Fermi taught me a general method,
which he called Bayes Theorem, where one could easily derive the
best-fit parameters and their errors as a special case of the
maximum-likelihood method. I remember asking Fermi how and
where he learned this. I expected him to answer R.A. Fisher or
some other textbook on mathematical statistics. Instead he said
‘perhaps it was Gauss’. I suspect he was embarrassed to admit that
he had derived it all from his ‘Bayes Theorem’.” (J. Orear)
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Which prior for frontier physics?

In many cases of frontier all methods can be misleading,
included those based on the Bayes formula
→ Anyway, it is important to understand the probabilistic

reasoning behind Bayesian methods
• In many frontier cases we just lose experimental sensitivity

around some edge, and therefore we are unable to state our
confidence that the value is before of after the edge

• Confidence limits −→sensitivity bounds
→ see contribution at the CERN 2000 Confidence Limit
Workshop, “Confidence limits: what is the problem? Is there
the solution?”, ( hep-ex/0002055)

→ PUBLISH LIKELIHOOD! (possibly in the rescaled form it will
be shown).
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→ r of a Poisson process in presence of bkgd

Rewriting in terms of r what we have sees before for λ:

f(r |nc, rb) ∝
e−(r+rb) T ((r + rb)T )nc

nc!
f◦(r) .

Uniform prior:

f(r |nc, rb, f◦(r) = k) =
e−r T ((r + rb)T )nc

nc!
∑nc

n=0
(rb T )n

n!

.

where rb is the expected rate of the background and nc the
observed number of counts.

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.30/38



An example of inferring r

2 4 6 8 10 12
r

0.2

0.4

0.6

0.8

1

f

Distribution of the values of the rate r, in units of events/month, inferred from
an expected rate of background events rb = 1 event/month, an initial uniform
distribution f◦(r) = k and the following numbers of observed events: 0
(solid); 1 (dashed); 5 (dotted).

→ which impression do you get? Do you see a serious problem?
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Dependence for ‘optimistic priors’

Upper plot shows some rea-
sonable priors reflecting the
positive attitude of researchers:
little influence on posterior!
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Dependence for ‘optimistic priors’

Upper plot shows some reason-
able priors reflecting the posi-
tive attitude of researchers: lit-
tle influence on posterior!

But the priors could be
concentrated at very low
values of r (think e.g.
gravitation wave search,
or an ‘exploratory’ first ex-
periment of a rare pro-
cess, without real hope of
finding something!)
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Rescaled likelihood (R function)

0.01 0.1 1 10
r

0.01

0.1

1

10

R

‘Relative belief updating ratio‘R for the Poisson intensity parameter r for
above cases. Note log scales!

This figure gives a precise picture of what is going on!
Also clear what a sensitivity bound is, and while “C.L.’s” can be misleading
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An example of R from real data (ZEUS)
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Higgs mass example (≤ 1998 data)

ℜ

R-function reporting results on Higgs direct search from the reanalysis
performed by GdA & Degrassi. A, D and O stand for ALEPH, DELPHI and
OPAL experiments. Their combined result is indicated by LEP3. The full
combination (LEP4) was obtained by assuming for L3 experiment a behavior
equal to the average of the others experiments.
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Which prior for frontier physics?

In many cases of frontier all methods can be misleading,
included those based on the Bayes formula
→ Anyway, it is important to understand the probabilistic

reasoning behind Bayesian methods
• In many frontier cases we just lose experimental sensitivity

around some edge, and therefore we are unable to state our
confidence that the value is before of after the edge

• Confidence limits −→sensitivity bounds
→ see contribution at the CERN 2000 Confidence Limit
Workshop, “Confidence limits: what is the problem? Is there
the solution?”, ( hep-ex/0002055)

→ PUBLISH LIKELIHOOD! (possibly in the rescaled form).
→ EASY COMBINATION OF RESULTS (independent

likelihoods factorize).
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My preferred conclusion

From the ISO Guide on “the expression of uncertainty in
measurement”

“Although this Guide provides a framework for assessing
uncertainty, it cannot substitute for critical thinking, intellectual
honesty, and professional skill. The evaluation of uncertainty is
neither a routine task nor a purely mathematical one; it depends
on detailed knowledge of the nature of the measurand and of
the measurement. The quality and utility of the uncertainty
quoted for the result of a measurement therefore ultimately
depend on the understanding, critical analysis, and integrity of
those who contribute to the assignment of its value.”

This is more or less how I interpret

Telling the truth with statistics
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End of lecture

End of lecture 5

Transparencies written with LATEX
using fyma style of prosper class.

Thanks to the authors!
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