

Earth Sciences: EGEODE

K Expanding Geosciences On Demand »

EGEE 1st EU Review – 9th to 11th February 2005 CERN Dominique Thomas; Gaël Youinou Compagnie Générale de Géophysique (CGG, France) R&D

www.eu-egee.org

INFSO-RI-508833

- Geocluster, the *seismic processing* generic platform from CGG
 - Being ported to EGEE for *Industry* and Academia
 - The main focus of EGEODE Virtual Organization
- Close collaboration with ESR « Earth Sciences Research » VO. (Earth Observation, Climate, Hydrology, Solid Earth Geophysics)

EGEODE application

Seismic processing Generic Platform for research and education:

- Based on Geocluster, an industrial application, used in production at CGG

- Include several standard tools for signal processing, simulation and inversion (model optimization).

- Open: any user can write new algorithms in new modules (shared or not)
- Free access for academic research
- Controlled by license keys (opportunity to explore license issue at a grid level)
- Initial partners F, CH, NL, Russia

Global workflow

Enabling Grids for E-sciencE

Demonstration outline

- GeoCluster run on standard EGEE production grid and on GILDA for induction of new users
 - Demonstration of a simple parametric study

Demonstration: NMO correction

CGCC Demo Enabling Grids for E-science

INFSO-RI-508833

Application users

- Enabling Grids for E-sciencE
- Who are the targeted users:
 - Researchers in seismic processing algorithms
 - Researchers in geosciences using seismic processing
- Few hundred, very scattered
- Imaging benchmark example:

- CGG
 - R&D team has access to large production facilities
 - Use state of the art technology in the full sequence
- University
 - Process a small part of data, hiding potential quality of results
 - Use basic processing except for imaging
 - Has a very innovative algorithm for imaging

- The general benefits of grid computing:
 - Access to computing resources without investing in large IT infrastructure
 - Lower the total cost of IT by sharing available resources
- And the specific benefits for Research community:
 - Access to a comprehensive, industrial software
 - Free the researcher from the additional burden of managing IT hardware and software complexity and limitations.
 - Have a framework to share data and project resources with other teams across Europe and the rest of the world,
 - Share best practices, support and training more easily.
 - Enable cross-organizational teamwork and partnership.

- Just started: the application is not yet fully available on the Grid
- 3 Sites on production grid +GILDA
 - CGG (CE/WNs; SE; UI), IPGP(CE/WN;UI), SCAI (CE/WN;SE)
 - GILDA(« get started »: easy access via portal for new grid user)

Key services

- Based on standard LCG-2
- 2 RB (LAPP, LAL, CGG in Q1)
- VOMS expected (managing sub-projects?)
- MPI expected (for Imaging)
- Licence server not yet implemented
- Compilation/Link server implemented (not part of LCG-2)

Limitations found and workaround

Enabling Grids for E-sciencE

- A running application
 - Gridifying: depedencies on run-time environment (WN!)
 - (new version of Geocluster: full availability: mid-2005)
 - Commercial software
 - (licence management must be implemented)
 - Size of the binary executable (>2Gb by default)
 - (two phases: compil/link + run => compilation server)

Cost comparison with using only local resources

- No figure available
 - Accounting system not yet used,
 - What are the relevant indicators (->TCO) ?
- Significant cost saving expected from centralized software management

Future work and direction

Enabling Grids for E-sciencE

- Lessons learned
 - It works
 - The learning curve is significant
- Next activities (in collaboration with ESR and EGEE)
- 1 Application
 - Finalize the porting of the application to the grid
 - Implement a licence management system
 - Implement an accounting system
 - Work on the data management issues (data servers, SE,..)
- 2 Users/deployment
 - Train a support team aware of both application and grid topics
 - Create a web based, support and information system (as any other VOs)
 - Consolidate and Formalize membership

Enabling Grids for E-sciencE

- what's missing to go to full production:
 - The validated application
 - An economical/usage model (and accounting tool)
 - To support a good balance between users and providers of resources
 - To include cost of network transfer
 - A mean to manage projects inside a VO: authorization for a user to access a project, accounting and licence management at a project or user level.
 - Middleware to implement local policies about dynamic priorities and resources allocation to VOs or Projects
- Expected deployment of EGEODE (with SA1 and NA4 support)
 - 5 sites, 100 nodes, 10 users Q2-2005
 - Up to 25 sites, 500 nodes, 100 users Q1-2006