

# Status of EGEE Production Service

*Ian Bird, CERN SA1 Activity Leader EGEE 1<sup>st</sup> EU Review* 9-11/02/2005





www.eu-egee.org



 Overview of the Grid Operations Service activities (SA1, SA2) – structure, successes, issues, and plans

#### Strategy has been to

- have a robust certification and testing activity,
- simplify as far as possible what is deployed, and to make that robust and useable.
- In parallel construct the essential infrastructure needed to operate and maintain a grid infrastructure in a sustainable way.
- Current service based on work done in LCG culminating in the current service ("LCG-2")
  - Now at the point where in parallel we need to deploy and understand gLite – whilst maintaining a reliable production service.



### SA1: Key points

Enabling Grids for E-sciencE

#### • Successes:

- A large operational production grid infrastructure in place and in use
  - Managed certification and deployment process in place
    - Markus Schulz talk
  - Managed grid operations process in place
    - 🖙 Hélène Cordier demo
- Have supported extensive and intensive use by the LHC experiments during 2004 data challenges (10 months)

NA4 talk

Now has Bio-medical community using the infrastructure, and others close

#### Issues:

•

- Continue to improve the quality, reliability and efficiency of the operations
  - How to approach "24x7" global operations.
- Develop user support in order to build a trusted, reliable and usable user support infrastructure
- Introducing and deploying new VOs is too heavy weight



### **SA1 Objectives**

- Core Infrastructure services:
  - Operate essential grid services
- Grid monitoring and control:
  - Proactively monitor the operational state and performance,
  - Initiate corrective action
- Middleware deployment and resource induction:
  - Validate and deploy middleware releases
  - Set up operational procedures for new resources
- Resource provider and user support:
  - Coordinate the resolution of problems from both Resource Centres and users
  - Filter and aggregate problems, providing or obtaining solutions
- Grid management:
  - Coordinate Regional Operations Centres (ROC) and Core Infrastructure Centres (CIC)
  - Manage the relationships with resource providers via service-level agreements.
- International collaboration:
  - Drive collaboration with peer organisations in the U.S. and in Asia-Pacific
  - Ensure interoperability of grid infrastructures and services for cross-domain VO's
  - Participate in liaison and standards bodies in wider grid community

## **eGee**

### **Milestones & Deliverables**

Enabling Grids for E-sciencE

| Month | Deliverable /<br>Milestone | Item                                                                                                                 | Lead  |  |  |  |  |  |  |
|-------|----------------------------|----------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| M03   | DSA1.1                     | Detailed execution plan for first 15 months of infrastructure operation                                              | CERN  |  |  |  |  |  |  |
| M06   | MSA1.1                     | Initial pilot production grid operational <b>10 sites</b>                                                            |       |  |  |  |  |  |  |
| M06   | DSA1.2                     | Release notes corresponding to the initial pilot Grid infrastructure operational                                     | INFN  |  |  |  |  |  |  |
| M09   | DSA1.3                     | Accounting and reporting web site publicly available                                                                 | CCLRC |  |  |  |  |  |  |
| M09   | MSA1.2                     | First review                                                                                                         |       |  |  |  |  |  |  |
| M12   | DSA1.4                     | Assessment of initial infrastructure operation and plan for next 12 months                                           | IN2P3 |  |  |  |  |  |  |
| M14   | DSA1.5                     | First release of EGEE Infrastructure Planning Guide ("cook-book"),                                                   |       |  |  |  |  |  |  |
| M14   | MSA1.3                     | Full production grid infrastructure operational 20 sites                                                             |       |  |  |  |  |  |  |
| M14   | DSA1.6                     | Release notes corresponding to the full production Grid infrastructure operational                                   |       |  |  |  |  |  |  |
| M18   | MSA1.4                     | Second review                                                                                                        |       |  |  |  |  |  |  |
| M22   | DSA1.7                     | Updated EGEE Infrastructure Planning Guide                                                                           |       |  |  |  |  |  |  |
| M24   | DSA1.8                     | Assessment of production infrastructure operation and outline of how sustained operation of EGEE might be addressed. |       |  |  |  |  |  |  |
| M24   | MSA1.5                     | Third review and expanded production grid operational 50 sites                                                       |       |  |  |  |  |  |  |
| M24   | DSA1.9                     | Release notes corresponding to expanded production Grid infrastructure operational                                   | INFN  |  |  |  |  |  |  |

## **Computing Resources: Feb 2005**





### Service Usage

Enabling Grids for E-sciencE

#### VOs and users •

| Metrics                                                                                                                          | Q1  | Q2  | Q3     | Q4 | Q5  | Q6 | Q7 | <b>Q8</b> | Details                                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------|----|-----|----|----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Number of supported<br>VOs                                                                                                       | 8   | 9   | 10     | •  | •   | •  | ·  | •         | See <u>delails</u>                                                                                                                                         |  |  |
| Number of associated VO                                                                                                          |     | 40  | 44     |    |     |    | •  |           | See <u>delails</u>                                                                                                                                         |  |  |
| Supported VOs not<br>primarily from physics                                                                                      | •   | 5   | 5      | •  | •   | •  | ·  | •         | Biomed, ESR (Earth Sciences), Compchem (Chemistry),<br>Magic (Astronomy), Egeod (Geo-Physics)                                                              |  |  |
| Number of users in supported VOs                                                                                                 |     |     | 497(*) |    |     |    |    |           | See <u>details</u> .                                                                                                                                       |  |  |
| Number of users in associated VOs                                                                                                |     |     |        |    |     |    |    |           | See <u>details</u> . Accurate numbers will be provided in the next QR.                                                                                     |  |  |
| Number of disciplines                                                                                                            |     | 5   | 6      |    |     |    |    | -         | Chemistry, Astronomy, Physics, Earth Sciences, BioMed,<br>Geo-Physics<br>See disciplines for <u>supported</u> and <u>associated</u> VOs                    |  |  |
| Number of experiments from physics                                                                                               |     | 7   | 7      |    |     |    |    | •         | LHC: <u>ALICE</u> , <u>ATLAS</u> , <u>CMS</u> , <u>LHCb</u> , More <u>details</u><br>Non-LHC: <u>DO</u> , <u>Barbar</u> , <u>CDF</u> , more <u>details</u> |  |  |
| <b>Number of deployed</b><br><b>applications</b> not<br>primarily from physics<br>approved by EGAAP<br>Applications deployed for | • ] | ГС  | ) k    | )e | ) ( | Jþ | Dd | a         | teco ions: CDSS, GATE, xmipp_Mlrefine,<br>D, gPTM3D)<br>ions: ESR(Earth Sciences); Egeod (Geo-<br>ations coming from industry: Egeod                       |  |  |
| testing on GILDA                                                                                                                 | 0   | 073 | 1374   | •  | •   | •  | ·  | •         | see <u>uetans</u>                                                                                                                                          |  |  |
| Number of applications submitted to EGAAP                                                                                        |     | 4   | 4+6    |    |     |    |    |           | See <u>details</u>                                                                                                                                         |  |  |
| Number of countries                                                                                                              |     | 26  | 27     |    |     |    |    |           | See <u>details</u>                                                                                                                                         |  |  |



### Infrastructure metrics

Enabling Grids for E-sciencE

|        | Annex<br>Expect | 1<br>ation | Status<br>at | Status<br>at |
|--------|-----------------|------------|--------------|--------------|
| Fed.   | PM1             | PM15       | PM6          | PM9          |
| CERN   | 900             | 1800       | 956          | 940          |
| UK     | 100             | 2200       | 2132         | 2415         |
| FR     | 400             | 895        | 160          | 244          |
| IT     | 553             | 679        | 1836         | 1337         |
| SE     | 146             | 322        | 108          | 130          |
| SW     | 250             | 250        | 408          | 390          |
| CE     | 385             | 730        | 356          | 327          |
| NE     | 200             | 2000       | 348          | 364          |
| DE-CH  | 100             | 400        | 910          | 1161         |
| RU     | 50              | 152        | 169          | 156          |
|        |                 |            |              |              |
| Totals | 3084            | 9428       | 7383         | 7464         |

To be updated & include actual situation,
No. not in Europe

| Metrics | Q1 | Q2        | Q3        | Q4 | Q5 | Q6 | Q7 | <b>Q8</b> | Details            |
|---------|----|-----------|-----------|----|----|----|----|-----------|--------------------|
| OMC     |    | 1         | 1         |    |    |    |    |           | See <u>details</u> |
| CIC     |    | 5         | -5        |    |    |    |    |           | See <u>details</u> |
| ROC     |    | 11        | 11        |    |    |    |    |           | See <u>details</u> |
| RCs     |    | <u>67</u> | <u>75</u> | 7  |    |    |    |           |                    |
|         |    |           |           |    |    |    |    |           |                    |



### Introducing VOs

- Mechanics:
  - The recipe is straightforward and clear
  - But, this is a heavy weight process and must be improved
  - Requires a lot of configuration changes by a site
    - Often leads to problems
- Policy:
  - Joint group of SA1/NA4 (called OAG in the TA)
  - Members are the application representatives and the ROC managers; chaired by NA4
    - Mandate
      - Understand application resource requirements
      - Negotiate those resources within the federations the ROC manager is responsible to make the negotiation
    - NB. A site is often funded for specific applications it is by and large NOT the case that any application is entitled to run anywhere
      - But let's demonstrate the value of being able to do that ...





- Evolution through 2003/2004
  - Focus has been on making these reliable and robust
    - Basic functionality and reliability rather than additional functionality
  - Respond to needs of users, admins, operators
- The software stack is the following:
  - Virtual Data Toolkit
    - Globus (2.4.x), Condor, etc
  - EDG developed higher-level components
    - Workload management (RB, L&B, etc)
    - Replica Location Service (single central catalog), replica management tools
    - R-GMA as accounting and monitoring framework
    - VOMS being deployed now
  - Operations team re-worked components:
    - Information system: MDS GRIS/GIIS → BDII
    - edg-rm tools replaced and augmented as lcg-utils
    - Developments on:
      - Disk pool managers (dCache, DPM)
      - Catalogue
  - Other tools as required:
    - e.g. GridIce DataTag

Maintenance agreements with:

- VDT team (inc Globus support)
- WLM, VOMS Italy
- DM CERN

10



### The deployment process

Enabling Grids for E-sciencE

#### Key point – a certification process is essential

- However, it is expensive (people, resources, time)
- But, this is the only way to deliver production quality services
- LCG-2 was built from a wide variety of "research" quality code
  - Lots of good ideas, but little attention to the boring stuff
- Building a reliable distributed system is hard –
  - Must plan for failure, must provide fail-over of services, etc
- Integrating components from different projects is also difficult
  - Lack of common standards for logging, error recovery, etc
- → Markus Schulz talk





### **Overall status**

- The EGEE production grid service is quite stable
  - The services are quite reliable
  - Remaining instabilities in the IS are being addressed
    - Sensitivity to site management
  - Underlying problems in (for example gridftp) must be addressed (reliable file transfer service)
- The biggest problem is stability of sites
  - Configuration problems due to complexity of the middleware
  - Fabric management at less experienced sites
- Job efficiency is not high, unless
  - Operations/Applications select stable sites (BDII allows a applicationspecific view)
- Operations workshop last November to address this
  - Fabric management working group write fabric management cookbook
  - Tighten operations control of the grid escalate and remove bad sites

### **SA1 – Operations Structure**

## Enabling Grids for E-science



#### **Operations Management Centre** (OMC):

At CERN – coordination etc

#### **Core Infrastructure Centres (CIC)**

- Manage daily grid operations oversight, troubleshooting
- Run essential infrastructure services
- Provide 2<sup>nd</sup> level support to ROCs
- UK/I, Fr, It, CERN, + Russa (M12)
- Taipei also run a CIC

#### **Regional Operations Centres (ROC)**

- Act as front-line support for user and operations issues
- Provide local knowledge and adaptations
- One in each region many distributed

#### **User Support Centre (GGUS)**

- In FZK manage PTS provide single point of contact (service desk)
- Not foreseen as such in TA, but need is clear

### **Grid Operations**



Enabling Grids for E-sciencE

- The grid is flat, but
- Hierarchy of responsibility
  - Essential to scale the operation
- CICs act as a single Operations Centre
  - Operational oversight (grid operator) responsibility
  - rotates weekly between CICs
  - Report problems to ROC/RC
  - ROC is *responsible* for ensuring problem is resolved
  - ROC oversees regional RCs
- ROCs responsible for organising the operations in a region
  - Coordinate deployment of middleware, etc
- CERN coordinates sites not associated with a ROC

**e**<sub>G</sub>ee



- CIC-on-duty
  - Responsibility rotates through CIC's one week at a time
  - Manage daily operations oversee and ensure
    - Problems from all sources are tracked (entered into PTS)
    - Problems are followed up
    - CIC-on-duty hands over responsibility for problems
  - Hand-over in weekly operations meeting
- Daily operations:
  - Checklist
  - Various problem sources: monitors, maps, direct problem reports
- Next step:
  - Continue to develop tools to generate automated alarms and actions

## egee

### **Operations Monitoring**

Enabling Grids for E-sciencE





- Need service level definitions
  - What a site supports (apps, software, MPI, compilers, etc)
  - Levels of support (# admins, hrs/day, on-call, operators...)
  - Response time to problems
  - Agreement (or not) that remote control is possible (conditions)
- Sites sign-off on responsibilities/charter/SLD
- Publish sites as bad in info system
  - Based on unbiased checklist (written by CICs)
  - Consistently bad sites  $\rightarrow$  escalate to political level GDB/PMB
- Small/bad sites
  - "Force" sites to follow upgrades
  - Remote management of services
  - Remote fabric monitoring (GridICE etc)



- How to move towards a 24x7-like global support:
  - Separate security (urgent issues) from general support
  - Distributed CIC provides "24x7" by using EGEE, Taipei, (America/Canada?)
  - Real 24x7 coverage only at CERN and large centres (CICcentres)
    - Or other specific crucial services that justify cost
    - Loss of capacity vs damage
    - Classify what are 24x7 problems
  - Direct user support not needed for 24x7
    - Massive failures should be picked by operations tools
- Having an operating production infrastructure should not mean having staff on shift everywhere
  - "best-effort" support
  - The infrastructure (and applications) must adapt to failures



### **Accounting in EGEE**

Enabling Grids for E-sciencE

### • Accounting at the moment is "after the fact"

- The most important way to determine how many resources were consumed by each VO (and potentially each user)
- No attempt to establish or impose quotas
  - But of course, each site can and does do so
  - Not a trivial problem jobs should not go to a site where they have no resource, but a modern batch system cannot give a definitive reply

#### Accounting Flow Diagram



## **e**Gee

Enabling Grids for E-sciencE





### **Operational Security**

Enabling Grids for E-sciencE

- Operational Security team in place
  - EGEE security officer, ROC security contacts
  - Concentrate on 3 activities:
    - Incident response
    - Dest presting advice for Origh Advaice presting dedicated web
  - Security group and work was started in LCG was from the start a cross-grid activity.
  - Much already in place at start of EGEE: usage policy, registration process and infrastructure, etc.
  - We regard it as crucial that this activity remains broader than just EGEE
    - Basic framework for incident definition and handling
- Site registration process in draft
  - Part of basic SLA
- CA Operations
  - EUGridPMA best practice, minimum standards, etc.
  - More and more CAs appearing



http://cern.ch/proj-lcg-security/documents.html



### **User Support**

We have found that user support has 2 distinct aspects:

- User support
  - Call centre/helpdesk
  - Coordinated through GGUS
  - ROCs as front-line
  - Task force in place to improve the service



- VO Support
  - Was an oversight in the project and is not really provisioned
  - In LCG we have a team (5 FTE):
    - Help apps integrate with m/w
    - Direct 1:1 support
    - Understanding of needs
    - Act as advocate for app
  - This is really missing for the other apps adaptation to the grid environment takes expertise



•

**Relationship to other grids** 

- National Grids within EGEE
  - The large national grid infrastructures in EGEE regions are becoming integrated into the overall service:
    - Italy Grid.IT sites are part of EGEE
    - UK/I National Grid Service sites are part of EGEE
    - Nordic countries Some sites run EGEE in parallel with NorduGrid
    - [ + SEE-Grid + EELA ]
- Strong relationship with Asia-Pacific
  - Taipei acts as CIC and hopefully will become a ROC
- External Grids
  - Most important are Grid3 (→ Open Science Grid) in USA and the Canadian Grid efforts (WestGrid and GridCanada)
    - OSG and EGEE use same base sw stack we have demonstrated job interoperability in both directions
      - Operations and security teams have much in common proposing specific joint activities
    - Canada at Triumf a gateway from EGEE to Canadian resources has been built and used in production
- This momentum has to maintained as we move to the next generation of middleware



- Technical Network Liaison Committee setup:
  - To provide an efficient place to deal with "practical" issues of interface between NRENs and EGEE (Network SLAs, Network Services),
  - 8 members: EGEE (SA2, SA1, JRA4), GEANT/NRENs (DANTE, DFN, GARR, GRNET), CERN,
  - 2 meetings in Cork and Den Haag.

#### First survey of network requirements complete

- A SA2-JRA4 workgroup has gathered 36 requirements, available in the EGEE requirements database.
- Three main requirement classes (operational, flow control, network characteristics) allow the specification of a minimum level of services (SLRs).

#### First service classes identified

- « User oriented » service classes, not « network classical classification».





### SA2 network actions

Enabling Grids for E-sciencE

- European network services survey, 43 NRENs concerned
  - Questionnaire sent to NRENs,
  - Data extracted from the TERENA compendium.



- QoS experimentation → A real network QoS use case in EGEE
  - Application: GATE (Geant4 Application for Tomographic Emission),
  - NRENs involved: Renater, RedIris, GEANT,
  - Aim: To have a better approach for the SLAs processing, to ask for network requirements to the middleware.



### SA2 network actions

Enabling Grids for E-sciencE

- Initial model for network service usage (M9)
  - A mapping of the EGEE services classes in the NRENs services classes,
    - Platinum-RTI and Platinum RTS in Premium IP (PIP) service,
    - Platinum-BT in the Best Effort Service or LBE service,
    - No available solution for VPN Encryption and Athentication,
    - For channel emulation, the service is only available in some parts of the networks.
  - A generic model for network resource management taking into account different provisionning mechanisms.
  - A SLS template which will be the technical part of the SLA.

#### • For the next period (M10-M24)

- SLAs definition, implementation:
  - Based on the previous works and the responses from EGEE and GN2 to some open issues (procedures, demarcation point ...)
  - Definition in cooperation with GN2.
- Operational interface between EGEE and GEANT/NRENs
  - SLA agreements processing, SLA monitoring.
  - Trouble Ticket system & reporting procedures
  - To have a theoretical schema approved by the partners (M12),
  - To implement the operational model in order to have a mature network operational interface.



- Milestones
  - MSA1.3 (M14) Full production grid infrastructure operational
    - 20 sites, using re-engineered middleware
  - MSA1.4 (M18) Second project review
  - MSA1.5 (M24) Expanded production grid operational
    - 50 sites
- Deliverables
  - DSA1.4 (M12) Assessment of operation of 1<sup>st</sup> 12 months
  - DSA1.5 (M14) First release of "cook-book"
  - DSA1.6 (M14) Release notes corresponding to MSA1.3
  - DSA1.7 (M22) Second edition of "cook-book"
  - DSA1.8 (M24) Assessment of production operation
    - Include thoughts on how to make the infrastructure sustainable
  - DSA1.9 (M24) Release notes corresponding to MSA1.5
- Changes wrt TA
  - No significant change





• TBD ... "We have done a lot – a lot more still to do"