

WP5

Mass Storage Management

J Jensen j.jensen@rl.ac.uk

Outline

- Objectives
- Achievements
- Lessons learned
- Future & Exploitation
- Questions

Objectives

- Develop uniform interfaces to mass storage
 - Control interface
 - Data Transfer interfaces
 - Information interfaces
- Develop back-end support for mass storage systems
 - Provide "missing" features, e.g. directory support
 - Provide Grid access control
- Integrate with EDG Replica Management services
 - Normally" users access SE via RM
- Publish information

Objectives

Control interface

- Original objective was "develop uniform interface to mass storage"
- GSI authentication required
- Interface changed to be a web service for compatibility with other WPs halfway through the project.
- SRM version 1 was adopted as an alternative API for compatibility with other projects and LCG
- Data Transfer interface
 - Globus GridFTP required
 - Must support both encrypted and unencrypted transfers
- Information interface
 - Publish to MDS and, later, R-GMA

Achievements – Storage Element

- EDG Storage Element
- Flexible architecture
 - Cope with changing requirements
 - Pluggable features such as access control
 - Easy to add support for new storage systems
 - Easy to add new interfaces
- Security
 - Encrypted Globus GSI-authenticated control interface
 - File level access control (not in EDG 2.1 though)
- Currently supports CASTOR, HPSS, ADS, as well as disk

Achievements – site specific

CASTOR SRM

- Provided an SRM interface to CASTOR at CERN
- Interoperability demonstrated with FermiLab
- SRMCopy implemented
- CASTOR GridFTP
 - Provided a GridFTP interface to CASTOR's cache
 - Based on the Globus wu-ftpd GridFTP server
 - Files must be staged in before access
 - Transfer rates up to 30 MB/s (with specially tuned TCP settings)

SARA

Porting SE to Irix, developing cache management tools

Achievements – collaborations

- Contributions to international standards and fora
 - SRM
 - Collaboration between Fermilab, Jefferson Lab, Lawrence Berkeley, RAL, CERN
 - Contributed to the design of the SRM version 2 protocol
 - GLUE
 - Contributed to the design of GLUE storage schema
 - GGF
 - Tracked developments in appropriate working groups
 - Dissemination
 - Talks at conferences and in working groups, publications,...

EDG

Participated in ITeam, ATF, SCG, QAG,...

Lessons learned

- Choice of architecture was definitely right
 - Architecture has successfully coped with changing requirements
- Look for opportunities for component reuse
 - Used web services deployment and security components provided by WP2
 - Deployed and developed further information producers supplied by WP3
 - Almost all Data Transfer components developed externally
- Scalability
 - Use on application testbed or in production found scalability problems not seen on development and integration testbeds

Lessons learned

- Inter-WP integration requires a lot of effort !
 - At times, nearly 100% of WP5 devoted to ITeam work and site installation support
 - Storage interface machines are heterogeneous
 - More installation support was required
 - For example, effort required to support DICOM servers was significantly underestimated
 - Requires significant effort from WPs 2, 3, 5, 10 plus of course SCG, ATF, and, eventually, ITeam
- Prototype implementations live longer than expected
 - SE's metadata system was implemented as prototype
 - Needs modifications to scale first step (of two) almost complete
 - Second step : need to choose appropriate database

Exploitation

- Used yesterday in middleware demo to access mass storage
- Used successfully on all EDG testbeds by all EDG applications
 WPs at all participating sites
- "Atlas Data Challenge 1.5"
 - SE is currently used by Atlas to transfer data between ADS at RAL and CASTOR at CERN
 - About 1500 files; 2 TB in total
 - Files are copied by EDG RM and registered in an RC at RAL
 - This work is being done by Atlas outside the EDG testbeds
- Storage Element information producers
 - Information producers used independently, e.g. by LCG and DZero in the "classic" SE

Future and exploitation

- Storage Element SRM
 - SE will provide generic SRM 1 interface
 - This work is almost finished
 - Work will be carried on by RAL; later in GridPP 2
 - To be tested by LCG
 - Will investigate whether to build SRM version 2
 - Depends on uptake of protocol in international community
 - Current SRM implementation is built with also SRM 2 in mind
 - Some additional features required
- Storage Element further mass storage systems
 - Scope for implementing support for AMS, DICOM?
 - Support for UK Tier-2 sites to be developed by GridPP2

Future and exploitation

- Storage Element and VOMS
 - Integrate VOMS support into SE SE already works with VOMS proxies
 - Will enable more scalable access control
 - Fairly easy task accomplished again by reusing components
 - May need to VOMS-enable GridFTP server integrate LCAS and LCMAPS
- Integration with GFAL
 - LCG's Grid File Access Library POSIX style interface
 - Planned integration using SRM 1 interface
- Automatic Grid mirroring
 - Looking into automatic mirroring data in UK NeSC between Edinburgh and Glasgow

Achievements – Storage Element

Storage Element Component overview

Title - nº 15

GFAL, SRM, and Storage Element

- LCG decided to use GFAL the "Grid File Access Library"
- It was decided to interface to EDG SE using SRM 1 interface
- SRM 1 can also be used for interoperability with DoE Labs
- We are integrating the EDG SRM layer with the EDG SE
- Some complications → not in 2.1
- We are committed to completing the task

