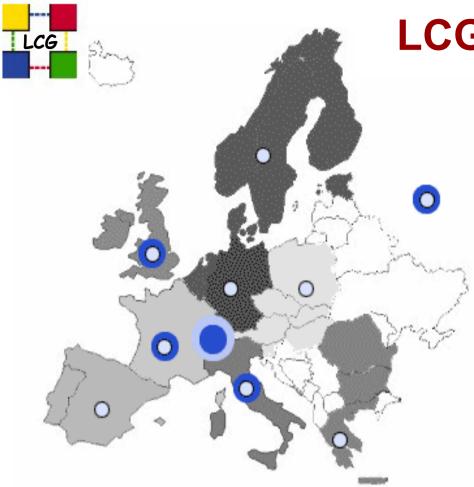
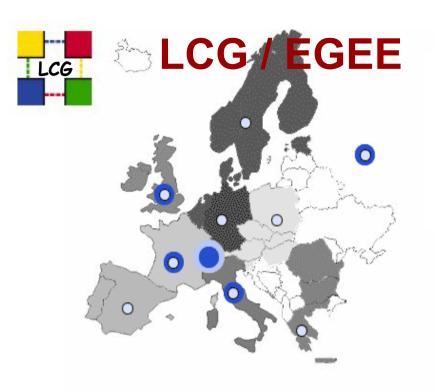


LHC Grid Deployment Board


Regional Centers Phase II Resource Planning Service Challenges

LHCC Comprehensive Review 22-23 November 2004

Kors Bos, GDB Chair NIKHEF, Amsterdam




Regional Centers

- EGEE is hierarchical organised
- CERN & 4 countries & 4 Federations
- For HEP and non-HEP applications

- LCG → EGEE in Europe
 - Operations Management Centre
 - Core Infrastructure Centre
 - Regional Operations Centre
 - OMC
 - Only CERN
 - CIC
 - CERN, RAL, CCIN2P3, CNAF
 - Provide central grid services like VO, Monitoring, Accounting, RB, BDII, etc
 - ROC
 - RAL, CCIN2P3, CNAF, Stockholm & SARA Amsterdam, FZK Karlsruhe, Athens, PIC Barcelona, Moscow
 - Responsible for a region

- OMC
 - Only CERN
- CIC 4
 - CERN, RAL, CCIN2P3, CNAF
 - Provide central grid services like VO, Monitoring, Accounting, RB, BDII, etc
- ROC 9
 - Stockholm, Amsterdam, Karlsruhe, Athens, Barcelona, Lyon, Bologna, Moscow, Didcot
 - Responsible for a region

- Tier-0
 - Only CERN
- Tier-1 ~10
 - RAL,CCIN2P3, CNAF, GridKa, NL, Nordic, PIC, BNL, FNAL, Triumf, ASCC
 - Provide central grid services like VO, Monitoring, Accounting, RB, BDII, etc
 - Data archive, re-processing
- Tier-2 ~100
 - No data archive, Monte Carlo, analysis
 - Depending on a Tier-1

Regional Centers & LCG Tier-1 Sites

				ALICE	ATLAS	CMS	LHCb	
1	GridKa	Karlsruhe	Germany	X	X	X	X	4
2	CCIN2P3	Lyon	France	X	X	X	X	4
3	CNAF	Bologna	Italy	X	X	X	X	4
4	NIKHEF/SARA	Amsterdam	Netherlands	X	X		X	3
5	Nordic	Distributed	Dk, No, Fi, Se		X			1
6	PIC	Barcelona	Spain		X	X	X	3
7	RAL	Didcot	UK	X	X	X	X	4
8	Triumf	Vancouver	Canada		X			1
9	BNL	Brookhaven	US		X			1
10	FNAL	Batavia, Ill.	US			X		1
11	ASCC	Taipei	Taiwan		X	X		2
				5	10	7	6	28

Grid Deployment Board

- National representation of countries in LCG
 - Doesn't follow T0/1/2 or EGEE hierarchy
 - Reps from all countries with T1 centers
 - Reps from countries with T2 centers but no T1's
 - Reps from LHC experiments (comp. coordinators)
- Meets every month
 - Normally at CERN (twice a year outside CERN)
- Reports to the LCG Proj. Exec. Board
- Standing working groups for
 - Security (same group also serves LCG and EGEE)
 - Software Installation Tools (Quattor)
 - Network Coordination (not yet)
- Only official way for centers to influence LCG
- Plays an important role in Data and Service Challenges

Phase 2 Resources in Regional Centers

Phase 2 Planning Group

- Ad hoc group to discuss LCG resources (3/04)
- Expanded to include representatives from major T1 and T2 centres and experiments and project management)
- Not quite clear what Phase 2 is: up to start-of-LHC (?)
- Collected resource planning data from most T1 centres for Phase 2
- But very little information available yet for T2 resources
- Probable/possible breakdown of resources between experiments is not yet available from all sites - essential to complete the planning round
- Fair uncertainty in all numbers
- Regular meetings and reports

Preliminary Tier-1 planning data

Experiment requirements and models still under development Two potential Tier-1 centres missing

Total resources required and planned in all Tier-1 Centres (except CERN)

First full year of data taking (2008)

All data is preliminary

Resource type	Estimated requirements (note 1)				Total resources planned	Balance	
noccured type	ALICE	ATLAS	CMS	LHCb	Total	at Tier-1 centres (note 2)	Daianoo
CPU (MSI2K)	9.1	16.6	12.6	9.5	47.8	44.7	- 6%
Disk (PBytes)	3.0	9.2	8.7	1.3	22.2	10.6	- 52%
Tape (PBytes)	3.6	6	6.6	0.4	16.6	19.8	19%

Notes

- **1.** Requirements will be reviewed by LHCC in January 2005
- 2. Current planning includes estimates of resources for which funding has not yet been secured

Some conclusions

- The T1 centers will have the cpu resources for their tasks
- Variation of a factor 5 in cpu power of T1 centers
- Not clear how much cpu resources will be in the T2 centers
- Shortage of disk space at T1's compared to what experiments expect
- Enough resources for data archiving but not clear what archive speed is needed and if this will be met
- Network technology is there but coordination is needed
- End-to-end service is more important than just bandwidth

Further Planning for Phase 2

- end November 2004: complete Tier-1 resource plan
- first quarter 2005:
 - assemble resource planning data for major Tier-2s
 - understand the probable Tier-2/Tier-1 relationships
 - initial plan for Tier-0/1/2 networking
- Developing a plan for ramping up the services for Phase 2
 - set milestones for the Service Challenges
 - See slides on Service Challenges
- Develop a plan for Experiment Computing Challenges
 - checking out the computing model and the software readiness
 - not linked to experiment data challenges which should use the regular, permanent grid service!
- TDR editorial board established → TDR due July 2005

Service Challenge for Robust File Transfer

Service Challenges

- Expts \leftarrow Tier-0 \leftarrow Tier-1 \leftarrow Tier-2 is a complex engine
- Experiments DCs mainly driven by production of many MC events
- Distributed computing better tested than data distribution
- Not well tested:
 - Tier 0/1/2 model
 - Data distribution
 - Security
 - Operations and support
- Specific service Challenge for

 - Security
 - Operations
 - User Support

Example: ATLAS

- Trigger rate = 200 Hz
- Event size = 1.6 MByte
- 10 T1 centers

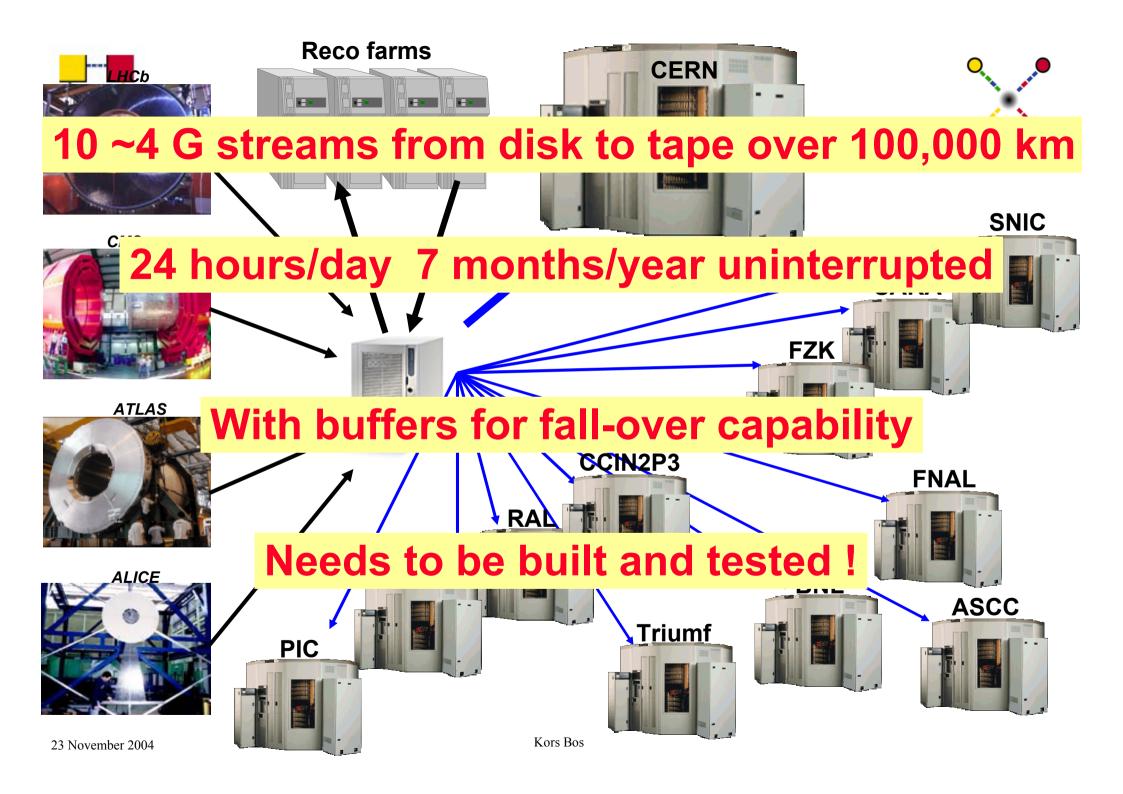
To each T1 32 MByte/sec = 256 Mbit/sec

Result of first pass reconstruction is called ESD data

- ESD = 0.5 MByte
- Trigger rate = 200 Hz
- 2 copies at T1's

To each T1 20 MByte/sec = 180 Mbit/sec

More refined datasets AOD and TAG add another few % Total for ATLAS: To each T1 ~500 Mbit/sec

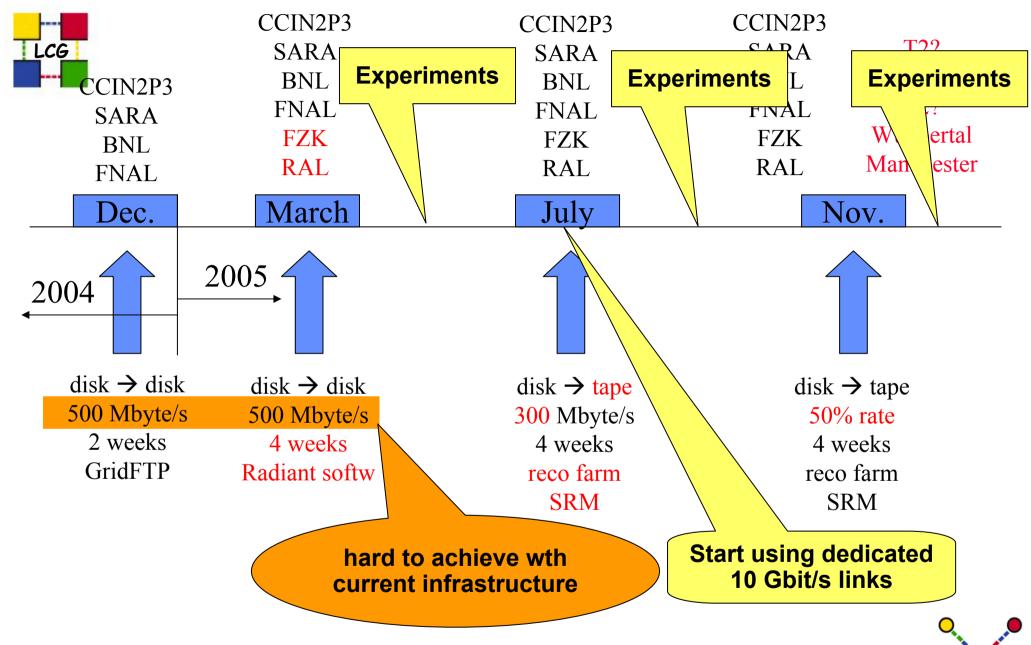

NB1 other experiments have fewer T1's

NB2 not all T1's support 4 experiments

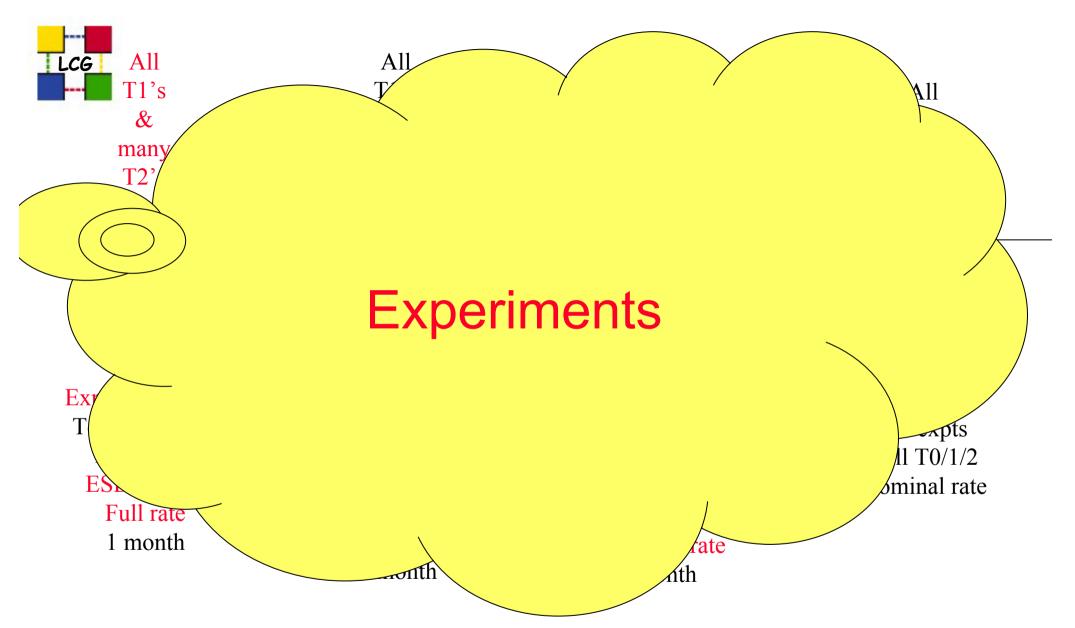
NB3 Alice events are much bigger, but runs are shorter

NB4 Monte Carlo, Re-Processing and Analysis not mentioned

Conclusion 1 ~10 Gbit/sec network needed between CERN and all T1's


Principles for Service Challenges

- Not a network bandwidth race In 2004 10 Gbit/sec has already been proven to be possible
- International network topology is important
 All T0-T1 dedicated links, dark fibers, redundancy, coordination
- End-to-end application: from the exp. DAQ to remote tape robot Progress to be made in steps by adding more components each step
- Sustainability is a challenge
 24 hours/day for 7 months in a row
- Redundancy and fall-over capability Data buffers for non-stop operation If one site fails other sites must be able to take more
- Performance must include grid software
 Not only bare GridFTP but SRM and Catalogs
- Performance must include experiment specific hard/soft/peopleware


Concentrate on generic issues first

Schedule/synchronise related service and computing challenges
 Must be able to all run concurrently

Milestones 1-4

Milestones 5-8

Planning for Service Challenges

Role of GDB

- Planning and coordination
- Monthly reporting
- Network coordination: dedicated GDB working group

Service challenge meetings:

- Oct 12 2004 -- Amsterdam
- Dec 2 2004 -- GridKa, Karlsruhe
- Jan 2005 RAL, Abingdon
- March 2005 CCIN2P3, Lyon
- April 2005

 ASTW, Taipei

Dedicated Network Coordination Meeting

■ Jan 11-12 – CERN: T1 reps + NRENs

Milestones Document: end January 2005

END

Role of Tier-1 Centers

- Archive of raw data
 - 1/n fraction of the data for experiment A where n is the number of T1 centers supporting experiment A
 - Or an otherwise agreed fraction (MoU)
- Archive reconstructed data (ESD, etc)
- Large disk space for keeping raw and derived data
- Regularly re-processing of the raw data and storing new versions of the derived data
- Operations coordination for a region (T2 centers)
- Support coordination for a region
- Archiving of data from the T2 centers in its region

Tier-2 Centers

- Unclear how many there will be
 - Less than 100, depends on definition
- Role for T2 centers:
 - Data analysis
 - Monte Carlo simulation
- In principle no data archiving
 - no raw data archiving
 - Possibly derived data or MC data archiving
- Resides in a region with a T1 center
 - Not clear to what extend this picture holds
 - A well working grid doesn't have much hierarchy

2004 Achievements for T0 → T1 Services

- Introduced at May 2004 GDB and HEPIX meeting
- Oct.5 2004 PEB concluded
 - Must be ready 6 months before data arrives: early 2007
 - Close relationship between service & experiment challenges
 - include experiment people in the service challenge team
 - □ use a.m.a.p. real applications even if in canned form
 - experiment challenges are computing challenges treat data challenges that physics groups depend on separately
- Oct 12 2004 service challenge meeting in Amsterdam
- Planned service challenge meetings:
 - Dec 2 2004 GridKa, Karlsruhe
 - Jan 2005 RAL, Abingdon
 - March 2005 CCIN2P3, Lyon
 - April 2005– ASTW, Taipei
- First Generation Hardware and Software in place at CERN
- Data transfers have started to Lyon, Amsterdam, Brookhaven and Chicago

Milestone I & II Proposal Service Challenge 2004/2005

Dec04 - Service Challenge I complete

- mass store (disk) -mass store (disk)
- 3 T1s (Lyon, Amsterdam, Chicago)
- 500 MB/sec (individually and aggregate) ← difficult !
- 2 weeks sustained ← 18 December shutdown!
- Software; GridFTP plus some macro's

Mar05 - Service Challenge II complete

- Software: reliable file transfer service
- mass store (disk) mass store (disk),
- 5 T1's (also Karlsruhe, RAL, ..)
- 500 MB/sec T0-T1 but also between T1's
- 1 month sustained ← start mid February !

Milestone III & IV Proposal Service Challenge 2005

July05 - Service Challenge III complete

- Data acquisition \rightarrow disk pool \rightarrow on tape at T0 and T1's
- Reconstruction Farm at CERN: ESD also to T1's
- Experiment involvement: DAQ, Reconstruction Software
- Software: real system software (SRM)
- 5 T1s
- 300 MB/sec including mass storage (disk and tape)
- 1 month sustained: July !

Nov05 - Service Challenge IV complete

- ATLAS and/or CMS T1/T2 model verification
- At 50% of data rate $T0 \rightarrow T1 \leftarrow \rightarrow T2 \leftarrow \rightarrow T2$
- Reconstruction scaled down to 2005 cpu capacity
- 5 T1's and 5 T2's
- 1 month sustained: November!

Milestone V & VI Proposal Service Challenge 2006

Apr06 - Service Challenge V complete

- Data acquisition → disk pool → on tape at T0 and T1's
- Reconstruction Farm at CERN: ESD also to T1's
- ESD skimming, distribution to T1's and T2's
- Full target data rate
- Simulated traffic patterns
- To all T1s and T2's
- 1 month sustained

Aug06 - Service Challenge VI complete

- All experiments (ALICE in proton mode)
- Full T0/1/2 model test
- 100% nominal rate
- Reconstruction scaled down to 2006 cpu capacity
- 1 month sustained

Milestone VII & VIII Proposal Service Challenge 2006/2007

Nov06 - Service Challenge VII complete

- Infrastructure ready at T0 and all T1's and selected T2's
- Twice the target data rates, simulated traffic patterns
- 1 month sustained T0/1/2 operation

Feb07 - Service Challenge VIII complete

- Ready for data taking
- All experiments
- Full T0/1/2 model test
- 100% nominal rate

Resources for Service Challenges

Cannot be achieved without significant investments in (initially)

- Manpower: few fte per T1 and at CERN
- Hardware: dedicated data servers, disk space, network interfaces
- Software: SRM implementations
- Network: 10 Gb dedicated T0 T1

Role of GDB

- Planning and coordination
- Monthly reporting
- Network coordination: dedicated GDB working group

Concerns

- T1 centers have not yet invested very much in it
- Also experiments have to take into their planning
- Dedicated network needs to be realised (coordination, finances, politics)