What are the highest energies of interest?

- Flys Eye, Agasa, Auger arrays reach ~ few 10²⁰ eV
- EUSO/OWL/?
 - ♦ If no GZK cutoff, may reach 10²¹ eV?
- IceCube reaches ~ 10¹⁵⁻¹⁸ eV, depending on flux,etc.
- Searches for radio waves from v_e showers have published limits up to 10^{25} eV
 - What is the highest energy at which we have a good hope of detecting a v?
 - What is the highest energy at which limits are of interest?

Studying Particle Physics with Showers

How can we study the weak interaction in v showers?

- ♦ What do we learn from studying the Glashow resonance (ve → W)?
- What can we learn about QCD by studying air/water showers?
 - Forward particle production
 - Energy Flow
- What about effects of the medium that the shower develops in?

Searches for Exotica in Showers

- Searches for exotic single particles
 - Monopoles
 - ♦ Q-balls
 - fractionally charged particles
- SUSY searches for upward going di-muons
 - Albuquerque, Burdman and Chako
- Can we search for other, more conventional exotica?
 - SUSY
 - ♦ Technicolor
 - Extra quarks, gluons, vector bosons, etc.

What do we need to learn from accelerator experiments & how can we 'get there'?

- Forward particle production
 - Energy flow?
- Low-x structure functions

The Cosmos vs. Accelerators

The Cosmos High Energy Low Luminosity Beam composition, energy not known *a priori*

Need huge detectors --> Limited sampling

Study overall event shape, very distinctive single particle signatures Accelerators Low Energy High Luminosity Well-known beam Some polarized beams

Good detectors, weaker in the forward region

Study individual produced Particles Reconstruct complex topologies