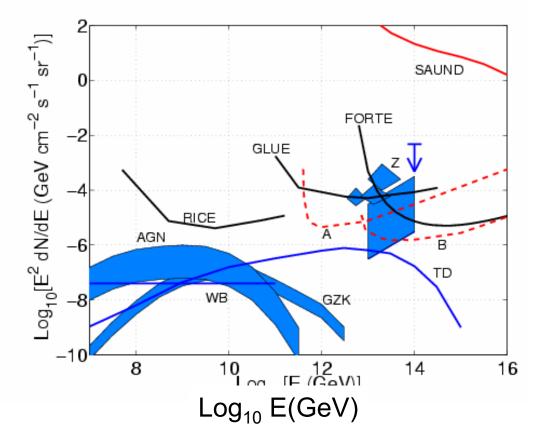
What do UHE Showers really look like?

Two open issues

Spencer Klein, LBNL


- Electromagnetic vs. hadronic showers?
 - Bremsstrahlung, pair production and the LPM effect
 - Photonuclear Interactions
 - What are the relative cross sections?
 - Shower development & Radio Cherenkov profiles
- Cherenkov Radiation from e⁺e⁻ pairs (w/ Sourav Mandal)

Why?

- IceCube & AUGER will collect 10-1000 times as much data as existing experiments
- Some newer experiments study radio and acoustic emission from v induced showers and set limit on neutrinos with energies up to 10²⁵ eV
- Interpreting this data requires a better understanding of what ultra-high energy showers look like.

High Energy (above 10²⁰ eV) searches

- Coherent electromagnetic/ acoustic radiation from showers
 - Sensitive to shower profile
- Mot analyses assume purely electromagnetic showers
 - ZHS parameterization for radio

Vandenbroucke, Gratta and Lehtinen (Saund)

Electromagnetic vs. Hadronic Showers

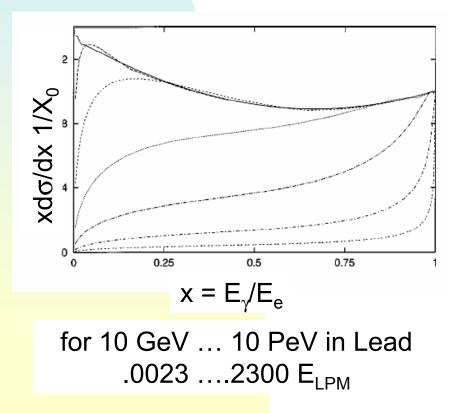
- Conventional Wisdom
 - ♦ Photons produce e⁺e⁻ pairs
 - Photonuclear interactions are rare, and can be neglected
- Reality
 - The LPM effect reduces the electromagnetic cross sections
 - $\bullet \sigma_{\gamma N}$ rises with energy
 - Photonuclear interactions are important

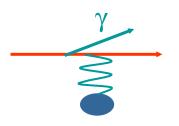
LPM Effect in brief

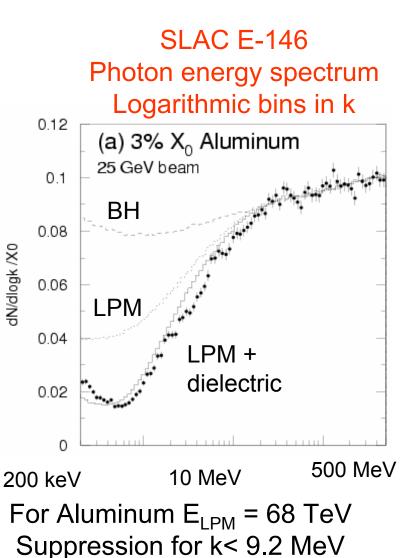
- At high energies, electromagnetic cross sections decrease
 - bremsstrahlung: eN-->eNγ
 - Pair production: $\gamma N \rightarrow e^+e^-N$
- The longitudinal momentum transfer from the nuclear target is small
 - For pairs $p_{\parallel} \sim M_{ee}^{2/2k}$

✓ For M_{ee}=2m_e, and k=10¹⁸ eV p_{||} = 10⁻⁶ eV

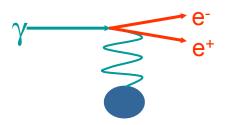
The reaction is not well localized

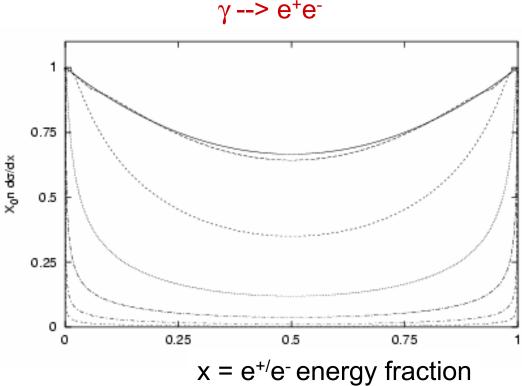

 $\sim l_f = h/p_{||}$. For k=10¹⁸ eV, $l_f = 20$ cm


- In dense media, the e/γ interacts with many nuclear targets.
- These interactions are indistinguishable and interfere destructively, reducing the cross section.

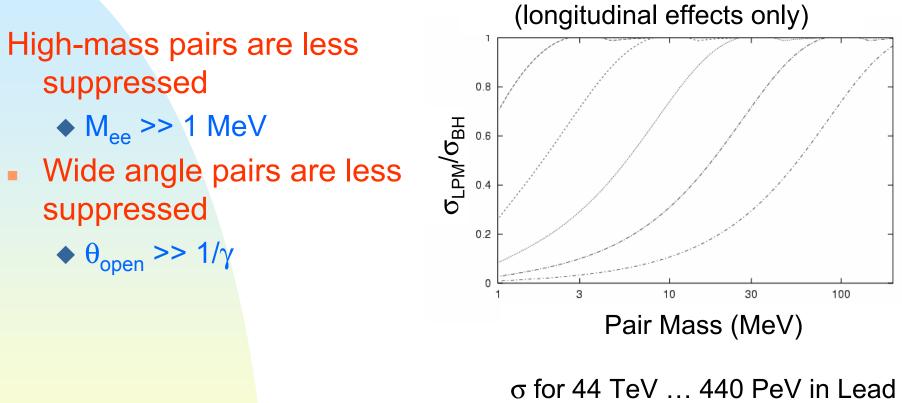

Bremsstrahlung

- Cross section is reduced when
 - $k < E(E-k)/E_{LPM}$
 - ♦ E_{LPM} ~ 61.5 TeV X₀ (cm)
- dN/dk ~ 1/√k


vs. Bethe-Heitler dN/dk ~ 1/k



Pair Production



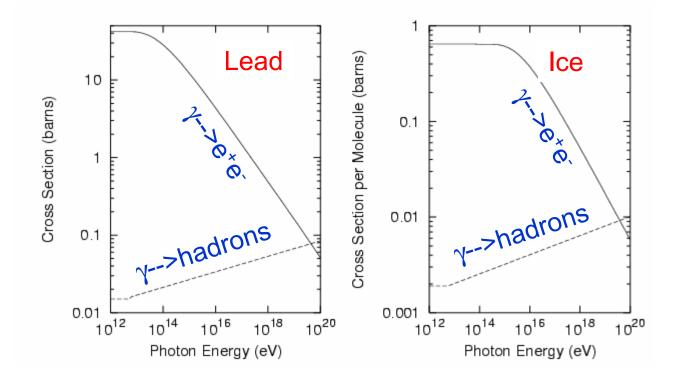
- Cross section is reduced
 - Symmetric pairs most suppressed
- Scales with X₀ (in cm)
- Less affected than bremsstrahlung
 - Due to kinematics

1 TeV (top) to 10^{18} eV (bottom) in lead Also 70 TeV to 7 10^{19} eV in water

Pair Suppression

10....105 E_{I PM}

Suppression vs. Pair mass


Photonuclear interactions

- Vector meson dominance
 - Photon fluctuates to a $q\bar{q}$ pair
 - qq pair interacts strongly, as a virtual ρ⁰
 - Cross section rises slowly with energy
- At high energies, direct photon interactions become significant
 - ♦ γq --> γq
 - Faster rise in cross section
 - Not yet experimentally accessible

R. Engel, J. Ranft and S. Roessler, PRD 57, 6597 ('97)

Electromagnetic vs. Hadronic Showers

- Reality:
- LPM effect suppresses pair production
- Photonuclear cross sections increase with energy

Above ~ 10^{19.5} eV, in lead/ice photonuclear interactions dominate There are no electromagnetic showers Similar effect in air, above 10²² eV (at sea level) *Now ... some concerns* SK: hep-ex/0402028

Some possible caveats

- How good are LPM calculations?
 - Gaussian scattering, other approximations
 - Normalization to X₀
- Suppression of bremsstrahlung due to pair conversion and vice-versa
- Higher order reactions and corrections
 - All LPM calculations are lowest order
- Radiation from electrons
- Extrapolating the photonuclear cross section

LPM - Migdal (1956)

- Most shower studies follow Migdal's (1956)
 - 1st quantum mechanical result
 - Stanev, Gaisser et al. (1982) simplified numerics
- Some simplifications
 - Gaussian scattering
 - Underestimates large angle scatters --> too much suppression?
 - No electron-electron interactions
 - ♦ No-suppression limit, → Bethe-Heitler cross section
 - Normalization of σ to modern X₀

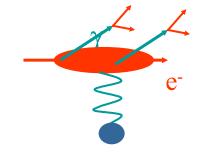
Zakharov

- Light-cone path integral approach
 - ◆ 2-d Green's function for an imaginary potential representing e⁺e⁻ pair scattering from a target
- Coulomb (non-Gaussian) scattering
- Separate elastic (eN) & (ee) inelastic potentials
 - Separate form factors
 - Significant for low-Z materials
- For soft photons from 1 TeV electrons, ~ 20% variation with k/E compared to Migdal
- Lower (?) cross sections than Migdal

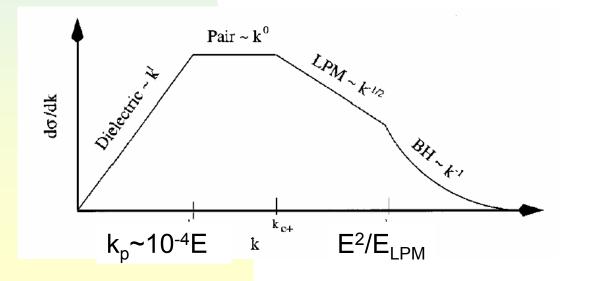
B. G. Zakharov (1996-1998)

Baier & Katkov

- Start with electron propagator for a screened
 Coulomb potential in Born approximation
 - Expand perturbatively
 - Coulomb potential and inelastic
 - Coulomb corrections to potential
 - No-suppression limit reproduces Bethe-Maximon result
 - For pair production in strong suppression limit:

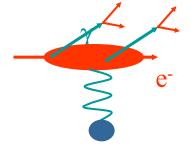

$$\frac{\sigma}{\sigma_{BM}} \approx 4.28 \sqrt{\frac{E_{LPM}}{k}} \left[1 - 1.672 \sqrt{\frac{E_{LPM}}{k}} - 2.192 \frac{E_{LPM}}{k} + \frac{1}{4L_1} \left(\ln \frac{k}{4E_{LPM}} + 0.274 \right) \right]$$

♦ 4.28 instead of 4


Last term increases σ ~ 2-10% at very large σ
 L₁ =183 Z^{-1/3}exp(-f)
 V. N. Baier and V. M. Katkov (1997)

Formation Length Suppression

- Additional suppression when I_f > X₀
 - ♦ A bremsstrahlung photon pair converts before it is fully formed.
 - Reduces effective coherence length
- A super-simple ansatz limit I_f to X₀
 - Suppression for k/E ~ 10⁻⁴ when
 - \sim E > E_p=15 PeV (sea level air)
 - ☞ E > E_p = 540 TeV (water)

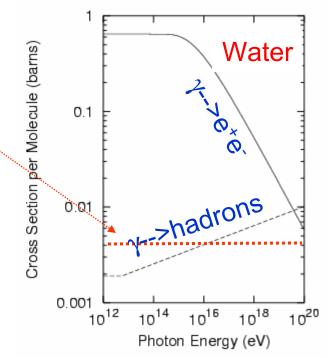

Suppression for k/E ~0.1 for E>5 10²⁰ eV in water

Landau & Pomeranchuk, 1953 Galitsky & Gurevitch, 1964 Klein, 1999

Formation Length Suppression

- Couples pair production and bremsstrahlung.
 - When I_f encompasses both reactions, they are no longer independent
 - Need to find cross section for complete interaction
 - eNN --> eNγN --> eNeeN
 - 2-step process not just direct pair production
 - As the bremsstrahlung and pair production cross sections drop, the effective radiation length rises, slowly self-quenching the interaction

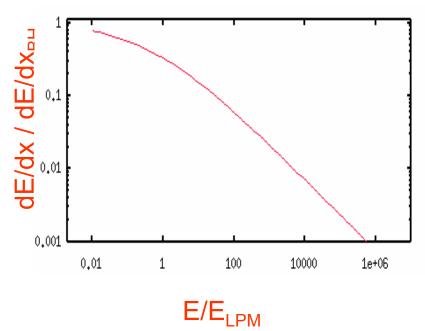
Ralston, Razzaque & Jain, 2002


Photonuclear interactions also limit coherence

- When $I_f > 1/\rho \sigma_{\gamma n}$
- $\sigma_{\gamma n}$ rises with energy, unlike pair production
- Dominates when $\sigma_{\gamma n} >> \sigma_{ee}$
 - When photon uclear interactions dominate

Higher-order corrections

- LPM calculations are lowest order
 - May fail for $\sigma/\sigma_0 \sim \alpha_{\rm EM} \sim 1/137$
- When suppression is large, higher order processes become more important
 - ♦ eN --> e⁺e⁻eN
 - Momentum transfer equivalent to bremsstrahlung of a massive (1 MeV) photon
 - ♦ I_f is much shorter


No LPM suppression up to at least 10²⁰ eV

Radiation from Electrons

- Electron range increases with energy as σ_{LPM} drops
- At E=5 10⁹ E_{LPM}
 - ♦ 7 10²³ eV for water
 - $dE/dx = 10^{-4} dE/dx_{BH}$
 - Range ~ 10⁴ X₀ ~ 3000 m
 - Ice thickness @ South pole
- Other reactions become more important.
 - Photonuclear interactions of virtual photons
 - Direct pair production
- Above ~ 10²⁴ eV, electrons may begin to look like muons.

Electron dE/dx by bremsstrahlung

 $1.5 \text{ TeV} - 1.5 \ 10^{22} \text{ eV}$ for water

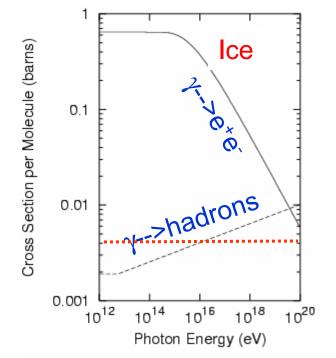
Photonuclear uncertainties

- Photonuclear cross sections are extrapolated from much lower energies
 - Pomeron model
 - *∝* **σ~**₩^{1.16}
 - Matches lower-energy data
 - At higher energies, direct photon interactions become important
 - Sensitive to nucleon and photon structure functions

γq --> gq γ --> qq; qq interacts

 Uncertain to a factor of ~2 at 10²⁰ eV (W = 5*10⁵ GeV)

R. Engel, J. Ranft and S. Roessler, PRD 57, 6597 ('97)


Uncertainties

Formation Length Limits

LPM Calculation

♦ 10-20% ?

- Combined & photonuclear interactions
- ♦ Important above 10²⁰ eV in water
- Reduces electromagnetic cross sections
- Higher Order Corrections
 - May be important when σ_{LPM} < α_{EM} σ_{BH}
 above 10²⁰ eV in water
- Photonuclear Cross Section
 - ♦ Factor of 2 at 10²⁰ eV

Photonuclear Interactions Predominate Above 10²⁰ eV in water What do these photonuclear interactions look like?

Effects on Showers in Ice

- v_e and γ induced showers develop hadronically when the individual particle energy > $10^{19.5} \,\text{eV}$
- Hadroproduced particles have larger p_T than those from electromagnetic interactions
 - Showers have larger transverse dimensions
 - Problematic for radio coherence
- Because of the LPM effect, hadronic showers are shorter than electromagnetic
 - More point-source-like
 - May help radio, acoustic, etc. studies,
- Muon content of showers is enhanced
 - charm/bottom
 - Electromagnetic cascades grow tails
 - Help with directional measurement?

Cherenkov Radiation from $\gamma \rightarrow e^+e^-$

(Work by Sourav Mandal, UC Berkeley)

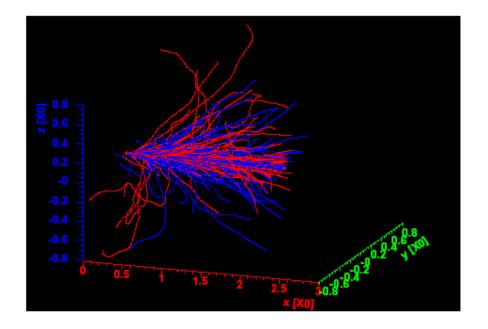
- Cherenkov radiation occurs when the electromagnetic fields of a fast particle excites a medium (~ through dE/dx)
- e⁺e⁻ pairs form dipoles. The fields are smaller than for 2 independent particles
- The fields largely cancel at distance d >> D (D is the pair separation)
- Radiation from the e⁺/e⁻ from γ -->e⁺e⁻ may be less than from independent particles

Radiation from a Pair

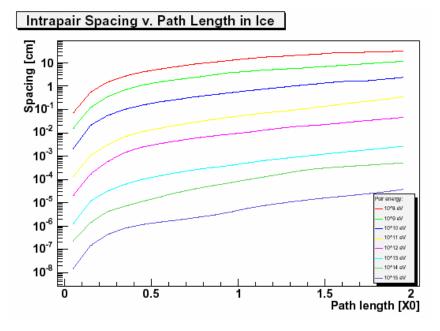
• Comparison with monopole radiation:

$$\frac{d^2 E}{dx d\omega} \bigg|_m = \frac{(ze)^2}{c^2} \omega \left(1 - \frac{1}{\beta^2 \epsilon(\omega)} \right)$$
$$\frac{d^2 E}{dx d\omega} \bigg|_d = \frac{d^2 E}{dx d\omega} \bigg|_m \times 2 \left[1 - J_0 \left(\frac{\omega d}{c} \sqrt{\beta^2 \epsilon(\omega) - 1} \right) \right]^2$$

SO

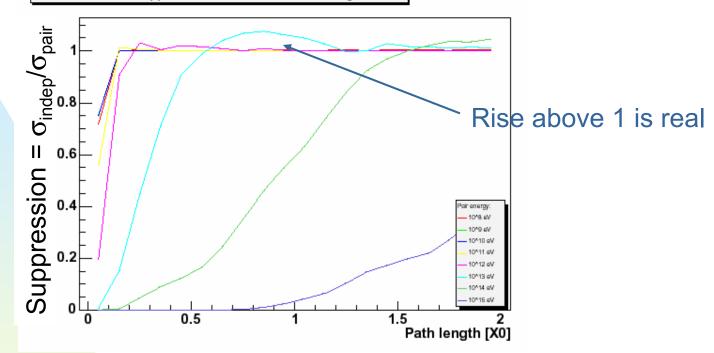

 $\left. \frac{d^2 E}{dx d\omega} \right|_d \sim \left. \frac{d^2 E}{dx d\omega} \right|_m$

• Radiation is suppressed when $\frac{\omega d}{c} \sqrt{\beta^2 \epsilon(\omega) - 1} < 1$


J. D. Jackson, private communication, 2004

Simulating Pairs

- Pair opening angle 1/γ
- Gaussian multiple scattering
- Stochastic bremsstrahlung energy loss
 - Ist approximation
- Track particles over 2 X₀ or until they drop below
 Cerenkov threshold



Combined tracks of all particles, γ energies from 10⁸ to 10¹⁵ eV

Radiation from Pairs

Relative Photon Suppression 300-800nm v. Path Length in Ice

■ k = 10⁸ … 10¹⁵ eV

- Radiation suppressed for k> 10¹² eV
 - Total radiation unaffected
 - Less radiation from front part of showers
 - Effect on observed location?

Particles in Air

- Dielectric Constant ε~1 in air
 - ε-1 decreases with increasing altitude
 - $\bullet X_0$ is much longer
- Overall, less affect on Cherenkov radiation

Conclusions

- Above 10²⁰ eV in ice, photonuclear interactions predominate over electromagnetic interactions.
 - This changes the shower development and shape of radiating area.
 - Considerable theoretical work is required to understand this transition
 - Higher-order LPM calculations
 - LPM calculations with bremsstrahlung & photonuclear interactions
- Transition in sea level air is at 500X higher energy.
- Cherenkov radiation from e⁺e⁻ pairs is less than for independent particles
 - May affect observation of the early development of water showers.