Hadronic interactions in modeling atmospheric cascades

The atmospheric cascade equation Heavy flavor production (atmospheric v) Inelasticity in ultra-high energy showers

QCD at Cosmic Energies Erice, Aug 30, 2004

Energies and rates of the cosmic-ray particles

Cascades in the atmosphere

 $\frac{dN_{i}(\varepsilon, x)}{dx} = \frac{N_{i}(\varepsilon, x)}{\lambda_{i}(\varepsilon)} - \frac{N_{i}(\varepsilon, x)}{d_{i}(\varepsilon)}$ + $\sum \int \frac{N_{i}(\varepsilon;x)}{\lambda_{i}(\varepsilon')} F_{i}(\varepsilon,\varepsilon') \frac{d\varepsilon'}{\varepsilon}$ is=PNTK ···· $F_{ij} = E \stackrel{.}{=} \frac{d\sigma_{ij}(E,E')}{dE} = in clusive distribution for$ i + A target = j + anythingX (g/cm2) = depth in tanget medium

Two boundary conditions

- Air shower, primary of mass A, energy E₀:
 N(X=0) = A δ (E- E₀ /A) for nucleons
 N(X=0) = 0 for all other particles
- Uncorrelated flux from power-law spectrum: $- N(X=0) = \phi_p(E) = K E^{-(\gamma+1)}$ $- \sim 1.7 E^{-2.7} (cm^{-2} s^{-1} sr^{-1} GeV^{-1}), top of atmosphere$
- $F_{ji}(E_i,E_j)$ has no explicit dimension, $F \rightarrow F(\xi)$ $-\xi = E_i/E_j \& \int ...F(E_i,E_j) dE_j / E_i \rightarrow \int ...F(\xi) d\xi / \xi^2$ - Expect scaling violations from m_i , $\Lambda_{OCD} \sim GeV$

QCD at Cosmic Energies Erice, Aug 30, 2004

Uncorrelated flux of atmospheric v

$$\begin{aligned}
\varphi'(E_{\tau}) &= \frac{\varphi'(E_{\tau})}{I-Z_{mn}} \begin{cases} \overline{Z}_{N\pi} \overline{Z}_{\pi\tau} \\ \overline{I} + D_{\pi} \frac{\overline{Coso} \overline{E}_{\tau}}{\overline{E}_{\pi\tau}} \\
T + D_{\pi} \frac{\overline{Coso} \overline{E}_{\tau}}{\overline{E}_{\pi\tau}} \\
Z_{ab} &= \int dx \{x^{1.7} dn_{ab}/dx\}, x = E_{b}/E_{a} \\
v &= v_{\mu} + \overline{v}_{\mu} \\
- good for E_{v} > 10 \text{ GeV} \\
&+ B_{kv} \frac{\overline{Z}_{Nk} \overline{Z}_{kv}}{I+D_{k} \frac{\overline{C}_{kv}}{\overline{E}_{\kappa}}} \\
\overline{Z}_{\pi v} &= .087 \quad \overline{Z}_{kv} = .34 \\
\overline{E}_{\pi} &= 115 \text{ GeV} \quad \overline{E}_{k} = 850 \text{ GeV}
\end{aligned}$$
QCD at Cosmic Energies
Erice, Aug 30, 2004
$$\begin{aligned}
\overline{QCD} &= Cosmic Energies \\
Erice, Aug 30, 2004
\end{aligned}$$

Primary spectrum of nucleons

- Plot shows
 - 5 groups of nuclei plotted as nucleons
 - Heavy line is
 E^{-2.7} fit to protons
 - Add up all
 components to get
 primary spectrum of
 nucleons ~ E^{-2.7}

Comparison to measured μ flux

- Input nucleon spectrum:
 1.7 E^{-2.7} (GeV cm s sr)⁻¹
- High-energy analysis - o.k. for $E_{\mu} > TeV$
- Low-energy:
 - dashed line neglects µ decay and energy loss
 - solid line includes an analytic approximation of decay and energy loss by muons

QCD at Cosmic Energies Erice, Aug 30, 2004

High energy (e.g. $\nu_{\mu} \rightarrow \mu$)

- Importance of kaons
 - main source of v
 > 100 GeV
 - $p \rightarrow K^+ + \Lambda$ important
 - Charmed analog important for prompt leptons

Thomas K. Gaisser

Importance of kaon production for atmospheric neutrinos

QCD at Cosmic Energies Erice, Aug 30, 2004

Uncertainties for uncorrelated spectra

- $p \rightarrow K^+ \Lambda$ gives dominant contribution to atmospheric neutrino flux for $E_v > 100$ GeV
- $p \rightarrow$ charm gives dominant contribution to neutrino flux for $E_v > 10$ or 100 or ? TeV
 - Important as background for diffuse astrophysical neutrino flux because of harder spectrum

Global view of atmospheric v spectrum

Highest energy cosmic rays

- $E_{max} \sim \beta_{shock} Ze \ x \ B \ x \ R_{shock}$ for SNR - $\rightarrow E_{max} \sim Z \ x \ 100 \ TeV$
- Knee:
 - Differential spectral index changes at $\sim 3 \times 10^{15} eV$
 - $\alpha = 2.7 \rightarrow \alpha = 3.0$
 - Some SNR can accelerate protons to $\sim 10^{15}$ eV (Berezhko)
 - How to explain 10^{17} to $>10^{18}$ eV ?
- Ankle at ~ $3 \times 10^{18} \text{ eV}$:
 - Flatter spectrum
 - Suggestion of change in composition
 - New population of particles, possibly extragalactic?
- Look for composition signatures of "knee" and "ankle"

QCD at Cosmic Energies Erice, Aug 30, 2004

Complex composition around "knee"?

Blow-up of knee region

 $Emax = Z \times 1 PeV$

Attenuation length in 2.7° background

HiRes monocular spectrum compared to AGASA --D. Bergman et al., Proc. 28th ICRC, Tsukuba, Aug. 2003

QCD at Cosmic Energies Erice, Aug 30, 2004

Akeno-AGASA / HiRes: comparison of what is measured

QCD at Cosmic Energies Erice, Aug 30, 2004

Energy content of extra-galactic component depends on location of transition

Thomas K. Gaisser

Composition with air showers

• Cascade of nucleus

- mass A, total energy E_0
- X = depth in atmosphere along shower axis
- $N(X) \sim A \exp(X/\lambda)$, number of subshowers
- E_N ~ E₀ / N(X), energy/subshower at X
- Shower maximum when $E_N = E_{critical}$
- $N(X_{max}) \sim E_0 / E_{critical}$
- $X_{max} \sim \lambda \ln \{ (E_0/A) / E_{critical} \}$
- Most particles are electrons/positrons
- μ from π -decay a distinct component
 - decay vs interaction depends on depth
 - $N_{\mu} \sim (A/E_{\mu})_* (E_0/AE_{\mu})^{0.78} \sim A^{0.22}$
- Showers past max at ground (except UHE)
 - \rightarrow large fluctuations
 - \rightarrow poor resolution for E, A
 - Situation improves at high energy and/or high altitude
 - Fluorescence detection $> 10^{17} \text{ eV}$

Schematic view of air shower detection: ground array and Fly's Eye

Shower profiles from Auger

Fig. 2. Left: Reconstructed longitudinal profile of a shower landing about 13 km from the detector. The estimated energy is around 1.3×10^{19} eV. The line is a fit to a Gaisser-Hillas function. *Right*: Same for an inclined shower landing about 20 km from the detector, with energy around 3.3×10^{19} eV

QCD at Cosmic Energies Erice, Aug 30, 2004

Change of composition at the ankle? If so, at what energy?

HiRes new composition result: transition occurs before ankle

G. Archbold, P. Sokolsky, et al., Proc. 28th ICRC, Tsukuba, 2003

QCD at Cosmic Energies Erice, Aug 30, 2004

Calculations of air showers

- Cascade programs
 - Corsika: full air-shower simulation is the standard
 - Hybrid calculations:
 - CASC (R. Engel, T. Stanev et al.) uses libraries of presimulated showers at lower energy to construct a higher-energy event
 - SENECA (H-J. Drescher et al.) solves CR transport Eq. numerically in intermediate region
- Event generators plugged into cascade codes:
 DPMjet, QGSjet, SIBYLL, VENUS, Nexus

QCD at Cosmic Energies Erice, Aug 30, 2004

What energies are important?

Model-dependence of X_{max}

HiRes new composition result: transition occurs before ankle

Wounded nucleons & inelasticity in p-air interactions $\langle N_w \rangle = \frac{\sum_{N=1}^{N} N \sigma_N}{\sigma_N}$

Mean number of wounded nucleons:

$$\sigma_{pA} \sim A^{2/3}$$
, so $< N_w > \sim A^{1/3}$

Assume fast pions materialize outside nucleus, so only "leading" hadron suffers further losses inside nucleus

$$P_{1} \xrightarrow{E_{0}} E_{0}/2 \qquad \frac{dn(\varepsilon, \varepsilon_{0})}{d\varepsilon} = \frac{1}{\varepsilon_{0}}$$

$$P_{2} \xrightarrow{\varepsilon_{0}} \underbrace{O \xrightarrow{\varepsilon_{0}}}{} \underbrace{E_{0}}/4 \qquad = \frac{1}{\varepsilon_{0}} \lim_{\varepsilon \to \varepsilon_{0}} \underbrace{E_{0}}{} \lim_{\varepsilon \to \varepsilon_{0}} \underbrace{E_{0}}{}$$

Hadronic interactions at UHE

1

- Most important is "leading" particle distribution
- At higher energy more complex interactions may be important, leading to increase of inelasticity (Drescher, Dumitru, Strikman hepph/0408073)

leading nucleon ions

 $s_{12} = x_1 x_2 s = 2m x_1 x_{2Elab} > few GeV$ resolves quarks/gluons in target; Gluon structure function: $g(x) \sim (1/x_2)^p, p \sim 0.2 \dots 0.4$

Thomas K. Gaisser

Example of increasing inelasticity

I have assumed effect is limited because energy not carried by leading nucleon is divided among pions, which materialize outside the target.

Such a large change would have a significant effect on interpretation -in terms of composition -of energy in a ground array

Agenda for discussion

- Hans-Joachim Drescher: "Black Body Limit in Cosmic Ray Air Showers"
- Giuseppe Battistoni: "Atmospheric cascades with FLUKA"
- Sergej Ostapchenko: "Non-linear effects in high energy hadronic interactions"
- Comments
 - Francis Halzen: Heavy flavor production
 - Ralph Engel: Comparison of models
 - Mike Albrow: "The White Pomeron, Color Sextet Quarks and Cosmic Ray Anomalies"
 - Spencer Klein: Electromagnetic effects
- Further discussion