

The real voyage is not to travel to new landscapes, but to see with new eyes...

Marcel Proust

Multi-Messenger Astronomy

protons, γ-rays, neutrinos, gravitational waves as probes of the high-energy Universe

2.

3.

protons: directions scrambled by magnetic fields

 γ -rays : straight-line propagation but reprocessed in the sources, extragalactic backgrounds absorb $E\gamma > TeV$ neutrinos: straight-line propagation, unabsorbed, but difficult to detect

Vastronomy

- v astronomy requires kilometerscale detectors
- AMANDA: proof of concept
- IceCube: a kilometer-scale v observatory

cosmic neutrinos associated with cosmic rays

Galactic and Extragalactic Cosmic Rays

1 TeV = 1.6 erg

>>> energy in cosmic rays ~ equal to the energy in light !

3x10³⁹ erg/s per galaxy 3x10⁴⁴ erg/s per active galaxy 2x10⁵² erg per gamma ray burst

~ 3x10⁻¹⁹ erg/cm³ or ~ 10⁴⁴ erg/yr per (Mpc)³ for 10¹⁰ years

>>> energy in extra-galactic cosmic rays:

Neutrinos Associated With the Source of the Cosmic Rays?

why km² telescope area **P**

- neutrinos associated with the observed sources of cosmic rays (and gamma rays)
- models of cosmic ray accelerators: an example
- "guaranteed" cosmic neutrino fluxes
 - \rightarrow cosmic ray interactions with CMBR
 - → cosmic ray interactions in galactic plane, in galaxy clusters, in the sun
 - → decaying EeV neutrons
 - → gamma ray burst
 - → **RXJ 1713 !!!**

Active Galaxy

Radiation Field: Ask Astronomers

- energy in protons ~
 energy in electrons
- photon target observed in lines
- >> few events per year km²

GZK Cosmic Rays & Neutrinos

cosmogenic neutrinos are "guaranteed"

• 0.1– few events per year in IceCube

 $p + \gamma_{CMB} \rightarrow \pi + n$

Gamma Ray Bursts

Fireball: Rapidly expanding collimated ball of photons, electrons and positrons becoming optically thin during expansion

Shocks: external collisions with interstellar material (e.g. remnant—guaranteed TeV neutrinos!!!) or internal collisions when slower material is overtaken by faster in the fireball.
Protons and photons coexist in the fireball

Models of Cosmic Ray Accelerators: Same Conclusion!

First-Generation Neutrino Telescopes

Requires Kilometer-Scale Neutrino Detectors

neutrino

The muon radiates blue light in its wake

•Optical sensors capture (and map) the light

ANTARES

Northern hemisphere detectors

<image>

1100 m deep data taking since 1998 new: 3 distant strings Antares

March 17, 2003 2 strings connected 2400 m deep completion: start 2006 Nestor

March 29, 2003 1 of 12 floors deployed 4000 m deep completion: 2006

Cerenkov light cone

- Infrequently, a cosmic neutrino is captured in the ice, i.e. the neutrino interacts with an ice nucleus
 - In the crash a muon (or electron, or tau) is produced

muon or tau

detector

interaction

neutrino

The muon radiates blue light in its wake
Optical sensors capture (and map) the light

AMANDA II

- up-going muon
- 61 modules hit

> 7 neutrinos/day on-line

> Size ~Number of Photons

Color displays: LE

1009 1

1137 1264

1903

2287

2414 2542 2 2670

2798 1 2926 2

Size displays: ADC

<2

< 10

Data file events.f2k File contains 148 events.

Recorded y/dy: 2000/48

<3

No example and geometry file is opened.

Detector: amanda-b-11, 19 strings, 680 modules

Displayin, data event 5676936 from run 199

33373.796 850 seconds past midnight. Before cuts: 63 hits, 61 OMs After cuts: 63 hits, 61 OMs

<4

<1

<9

Primary Channels

t

m

e

Size scaling: Lin

<6

<5

<7

<8

AMANDA Event Signature: Nuon

CC muon neutrino interaction → track

 $\nu_{\mu} + N \rightarrow \mu + X$

No external geometry file is opened. Detector: ananda-b-10, l0atrings, 302 modules Data file: /lone/itaboada/anira_eventa&trict19.f2k File contains 19 events. Displaying data event 1197960 from run 0 Recorded yo'dy: 1997/285 I&I32.0091381 accords past roidright. Before cuts: 44 hits, 44 OMs After cuts: 44 hits, 44 OMs Antraoun x y zVettex pos: 12.4 -16.1 6.8 m Direction: 0.03970.0.41614.0.90844 Length: Inf ro

Energy : ? GeV Time : 3205,100000 ns Zenith : 155,3°

Azimuth : 264.6°

#

0...0 . . . •

.

.

:

Detection of $\phi_v(E_v)$ $dN/dE = A_{\nu} \phi_{\nu}$ $= \{ \mathbf{P}_{\text{earth}} \; \mathbf{P}_{\mu} \; \mathbf{A}_{\mu} \} \; \phi_{\nu}$ with $P_{\mu} = n R_{\mu} \sigma_{\nu} \sim 10^{-6} E_{\text{Tev}}$ $A_v = P_{earth} P_{\mu} A_{\mu}$

Cerenkov light cone

- Infrequently, a cosmic neutrino is captured in the ice, i.e. the neutrino interacts with an ice nucleus
 - In the crash a muon (or electron, or tau) is produced

muon or tau

detector

interaction

neutrino

The muon radiates blue light in its wake
Optical sensors capture (and map) the light

at TeV energy

Neutrino area: 10~100 cm²

Muon area: ~ 10,000 m²

(geometric area 0.03-0.1 km²)

The AMANDA Detector

AMANDA effective area

 $\begin{bmatrix} 45 \\ 40 \\ 35 \\ 30 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 2 \\ 25 \\ 3 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 2 \\ 25 \\ 3 \\ 3 \\ 5 \\ 20 \\ 15 \\ 10 \\ 2 \\ 2.5 \\ 3 \\ 3.5 \\ 4 \\ 4.5 \\ 5 \\ 5.5 \\ 6 \\ 6.5 \\ log E_{\mu} [GeV]]$

1968 OSO-3 (Kraushaar et al. 1972)

effective area 4 cm² 600 photons

sources seen in next mission! SAS-2 100 cm²

AMANDA: proof of concept

Atmospheric Neutrinos

Atmospheric V 's as Test Beam

Diffuse muon neutrino fluxes

Astronomy

Fireball Phenomenology & The Gamma-Ray Burst (GRB) Neutrino Connection

Skyplot Amanda-II, 2000

AMANDA 2000

2000-03: scrambled (top) and unblinded (bottom)

Significance map for 2000-2003

90% C.L. upper limits (in units of 10^{-8} cm⁻²s⁻¹) for selected sources for an E⁻² spectral shape integrated above E_v=10 GeV

		1997		2000	200	0+2001
Source	Declination	$\Phi_{\nu}^{\text{limit}}$	$\Phi_{ m v}^{ m limi}$	t N _{obs} / N _{bgr}	$\Phi_{ m v}^{ m lim}$	it N _{obs} / N _{bgr}
SS433	5.0°	-	0.7	0 / 2.38	2.3	1 / 1.69
M87	12.4°	17.0	1.0	0 / 0.95	3.8	2 / 1.10
Crab	22.0 [°]	4.2	2.4	2 / 1.76	4.2	3 / 1.10
Mkn 421	38.2°	11.2	3.5	3 / 1.50	1.5	0 / 0.65
Mkn 501	39.8°	9.5	1.8	1 / 1.57	1.4	0 / 0.69
Cyg. X-3	41.0 [°]	4.9	3.5	3 / 1.69	1.5	0 / 0.67
Cas. A	58.8°	9.8	1.2	0 / 1.01	4.7	2 / 1.03

Selected Source Analysis

Stacking Source Analysis

Galactic Plane

Transient Sources

Burst Search

Correlation Analysis

Multi-Pole Analysis

Lower energy threshold (optimize to steeper spectra)

Neutrino Beams: Heaven & Earth

AMANDA average flux limit for two assumed spectral indices α , compared to the average gamma flux of **Markarian 501** as observed in 1997 by HEGRA.

AMANDA-II has needed to search fluxes from TeV gamma sources of similar strength to the instrinsic gamma flux. This Plot 2000 data only!

Supernova Beam Dump

...leaving the 3 σ club

	iceCube	AMANDA-II**	ANTARES
# OF PMTS	4800/10 INCH	600/8 INCH	900/10 INCH
point source sensitivity $(v_{\mu}$ per year)	10 -17 cm -2 s -1	1.6 10⁻¹⁵ cm⁻² s⁻¹ weakly dependent on declination	0.45 x 10 ⁻¹⁵ cm ⁻² s ⁻¹ depending on declination
diffuse limit* (ν_{μ} per year)	10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹	10⁻⁷ GeV cm⁻² S ⁻¹ S r ⁻¹	0.8 x 10 ⁻⁷ GeV cm ⁻² s ⁻¹ sr ⁻¹

* depends on assumption for background from atmospheric neutrinos from charm ** includes systematic errors

Water or Ice ?

Kilometer-Scale Neutrino Telescopes

Size Perspective

DOM Mainboard

HV Board Interface 2xATWD FPGA Memories CPLD oscillator (Corning Frequency Ctl) running at 20 MHz maintains $\delta f/f < 2 \times 10^{-10}$

 2 four-channel ATWDs
 Analog Transient Waveform Digitizers low-power ASICs
 recording at 300 MHz over first 0.5µs signal complexity at the start of event

fast ADC
 recording at 40 MHz over 5 μs
 event duration in ice

Dead time < 1%</p>

Dynamic range - 200 p.e./15 ns - 2000 p.e./5 μs energy measurement (TeV - PeV)

> FPGA (Excalibur/Altera) reads out the ATWD handles communications time stamps events
> system time stamp resolution 7 ns wrt master clock

2 x 10¹⁹ eV event in AMANDA and IceCube

enhanced role of tau neutrinos:

- cosmic beam: $v_e = v_\mu = v_\tau$ because of oscillations
- v_{τ} not absorbed by the Earth (regeneration)
- pile-up near 1 PeV where ideal sensitivity

IceCube

• Start 2002

- First strings 2004
- Completed 2010

conclusions

• AMANDA collected > 5,000 v's

• ~ 10 (7) more every day on-line

• neutrino sensitivity has reached $v = \gamma$

• > 300,000 per year from IceCube

• from 1 Crab to < 0.01 Crab sensitivity

- Bartol Research Institute, Delaware, USA
- Univ. of Alabama, USA
- Pennsylvania State University, USA
- UC Berkeley, USA
- Clark-Atlanta University, USA
- Univ. of Maryland, USA

- IAS, Princeton, USA
- University of Wisconsin-Madison, USA
- University of Wisconsin-River Falls, USA
- LBNL, Berkeley, USA
- University of Kansas, USA
- Southern Univ. and A&M College, Baton Rouge

IceCube effective area for muons

- after quality cuts and atm μ reduction by ~10^6 - averaged over E^2 spectrum

- at trigger level
- after quality cuts and atm m red.
- after additional energy cuts optimized for point source search

For E > 1 TeV, $A_{eff} > A_{geom} \rightarrow non-contained events$

Comparison of different km3 architectures

Simulations have been performed with the ANTARES simulation package

Tower architecture (5832 OM)

18 storey towers with 4 OM per storey
20 m storey length
40 m spacing between storeys
81 towers arranged in a 9x9 square lattice
140 m spacing between towers
≈ 0.9 km3 instrumented volume

Lattice architecture (5600 OM)

Strings with 58 downlooking OM
spaced by 16 m
100 strings arranged in a 10x10 lattice
125 m spacing between string
≈ 1.2 km3 instrumented volume

Comparison of string and tower geometries

- Up-going muons with E⁻¹ spectrum
- 60 kHz background
- Reconstruction + Quality Cuts

