

High Performance Computing and Grid in Latvia: Status and Perspectives

Janis Rimshans and Bruno Martuzans

Institute of Mathematics and Computer Science, University of Latvia, Riga, LV-1459, Latvia

BaltGrid, 2004, Vilnius, Lithuania

Introduction

- What?
 - HPC actual problems
 - \cdot charge and mass transfer in a non-linear media
 - \cdot ferroelectric/ferromagnetic and critical indices
- Why?
 - Multidimensional and complicated geometry problems need to be supported by effective calculations
- How?
 - Numerical methods, Monte Carlo simulations
 - Parallel programming
- So what?
 - Grid connections to supercomputers

Charge transfer : IMCS University of Latvia (Latvia) & MCI Southern Denmark University, supported by CIRIUS (Denmark)

Optically sensitive semiconductor plasma

$$\begin{aligned} \frac{\partial n_{\alpha}}{\partial t} - \frac{\partial J_{n}^{\alpha}}{\partial x} &= -\left(R^{\alpha} - G^{\alpha}\right) , \quad \alpha = c, \quad \alpha = e \\ \frac{3}{2} \frac{\partial}{\partial t} \left(n_{\alpha} T_{n}^{\alpha}\right) + \frac{\partial}{\partial x} S_{n}^{\alpha} &= -J_{n}^{\alpha} \frac{\partial \varphi}{\partial x} + P_{n}^{\alpha} \\ \frac{\partial p_{\alpha}}{\partial t} + \frac{\partial J_{p}^{\alpha}}{\partial x} &= -\left(R^{\alpha} - G^{\alpha}\right) \\ \frac{3}{2} \frac{\partial}{\partial t} \left(p_{\alpha} T_{p}^{\alpha}\right) + \frac{\partial}{\partial x} S_{p}^{\alpha} &= -J_{p}^{\alpha} \frac{\partial \varphi}{\partial x} + P_{p}^{\alpha} , \qquad J_{p}^{\alpha} = -\mu_{n}^{\alpha} p_{\alpha} \frac{\partial \varphi}{\partial x} - \frac{\partial}{\partial x} \left(\mu_{p}^{\alpha} p_{\alpha} T_{p}^{\alpha}\right) \\ \frac{\partial}{\partial x} \left(\kappa \frac{\partial \varphi}{\partial x}\right) &= n_{c} - p_{c} + n_{e} - p_{e} - \left(N_{d} - N_{a}\right) , \\ S_{n}^{\alpha} &= -C_{e}^{\alpha} \left(-\mu_{n}^{\alpha} n_{\alpha} \frac{\partial \varphi}{\partial x} T_{n}^{\alpha} + \frac{\partial}{\partial x} \left(\mu_{n}^{\alpha} n_{\alpha} \left(T_{n}^{\alpha}\right)^{2}\right)\right) \\ J_{n}^{\alpha} &= -\mu_{n}^{\alpha} n_{\alpha} \frac{\partial \varphi}{\partial x} + \frac{\partial}{\partial x} \left(\mu_{n}^{\alpha} n_{\alpha} T_{n}^{\alpha}\right) , \\ S_{p}^{\alpha} &= -C_{h}^{\alpha} \left(\mu_{p}^{\alpha} p_{\alpha} \frac{\partial \varphi}{\partial x} T_{p}^{\alpha} + \frac{\partial}{\partial x} \left(\mu_{p}^{\alpha} p_{\alpha} \left(T_{p}^{\alpha}\right)^{2}\right)\right) \end{aligned}$$

Charge transfer : IMCS University of Latvia (Latvia) & MCI Southern Denmark University, supported by CIRIUS (Denmark)

R.V.N. Melnik and J. Rimshans, Monotone schemes for time-dependentenergy balance models, ANZIAM J. 45 (E), C729-C743, 2004 (Proc. of 11thComputational Techniques and Applications Conference, CTAC-2003)

R.V.N. Melnik and J.Rimshans, Numerical Analysis of Fast Transport in Optically Sensitive Semiconductors, Special Issue of DCDIS – 2003, DCDIS Series B, ISSN 1492-8760, Guelph, Ontario, Canada, p.1-6.

Shock waves: IMCS University of Latvia (Latvia) & DMR National Science Foundation (USA)

Shocked solid conductors

$$\nabla \mathbf{J}_{n} = -\frac{\partial n}{\partial t}$$

$$\mathbf{J}_{n} = -D_{n} \left(\nabla n - \frac{q}{k_{B}T} n \nabla (\varphi + \varphi_{T}) \right)$$

$$\nabla \left(\varepsilon \nabla \varphi \right) = -\frac{q}{\varepsilon_{0}} \left(N_{d} - n \right)$$

$$q \nabla \varphi_{T} = -m \frac{\partial v}{\partial t}$$

B.Martuzans. Yu. Skryl, M.M. Kuklja, *Dynamic Response of the Electrone-Hole System in the shocked silicon*. Latvian Journal of Physics and Technical Sciences. N4, pp. 56-68, 2003

Yu. Skryl, M.M.Kuklja, Numerical simulation of electron and hole diffusion in shocked silicon, AIP Conference Proceedings, 706(1), 267-270 (2004).

Convection-diffusion: IMCS University of Latvia (Latvia) & SMS&EPCC University of Edinburgh, supported by Royal Society (UK)

J.Rimshans and N.Smyth, Monotone exponential difference scheme for advection diffusion equation, Submitted for Numerical methods for partial differential equations, 2004.

Ferroelectric materials under alternate driving:

ISSP&IMCS University of Latvia (Latvia)

Probability density: key entities

J. Hlinka and E. Klotins, Application of elastostatic Green function tensor technique to electrostriction in cubic, Hexagonal and Orthorombic crystals, J. Phys.: Condens. Matter 15 (2003) 5755-5764

Ferroelectric materials under alternate driving:

ISSP&IMCS University of Latvia (Latvia)

Parameters of the model:

Quartic Landau-Ginzburg energy functional+periodic driving. Amplitude of driving voltage = A0/2Dimensionless frequency = 10^{-4} Diffusion constant (noise strength = 1/20Polarization = first moment of the

instantaneous probability density

E. Klotins, Relaxation dynamics of metastable systems: application to polar medium, Physica A, 340 (2004) 196-200

Ferroelectric materials under alternate driving: IMCS University of Latvia (Latvia)

Spatially homogeneous case $\frac{1}{\gamma}\frac{\partial f}{\partial t} = \frac{\partial}{\partial P_0} \left\{ Vf\left[\alpha P_0 + \beta P_0^3 - A\sin\left(\omega t\right)\right] + \theta \frac{\partial f}{\partial P_0} \right\}$ 1.10 P0 $\gamma = V = \beta = 1$ $\alpha = -1$ 0.55 $\theta = 0.05$ 0.00 = 0.309-0.55 $\omega = 10^{-3}$ $\lambda(t)/A$ -1.10 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6

J. Kaupužs, J. Rimshans, Polarization kinetics in ferroelectrics with regard to fluctuations, Cond-mat/0405124, 2004.

Critical exponents: IMCS University of Latvia (Latvia)

 $\boldsymbol{\varphi}^4$ perturbation theory

$$H / T = \int dx \left(r \ \varphi^2 \left(x \right) + c \left(\nabla \varphi \left(x \right) \right)^2 + u \ \varphi^4 \left(x \right) \right)$$
$$\frac{1}{2G_i(k)} = r_0 + ck^2 - \frac{\partial D(G)}{\partial G_i(k)} \qquad \text{Dyson equation}$$

Predicted for 3D Ising model: Susceptibility exponent $\gamma = 5/4$ Correlation length exponent $\upsilon = 2/3$ Magnetization exponent $2\beta = d\upsilon - \gamma$

J.Kaupužs, Ann. Phys. (Leipzig) 10 (2001) 4, 299-331

Critical exponents: IMCS University of Latvia (Latvia)

J.Kaupužs, Proceedings of SPIE, vol. 5471, pp. 480-491, 2004; e-print cond-mat/0405197

Main problems

- Convection diffusion
 - Advective transport
 - Convection
- Monte Carlo simulations
- Data transmission
- Training

Advective transport

Ornstein-Uhlenbeck process

Unconditionally monotone scheme

$$(\Lambda(\beta)C^{i+1})_{i} = \frac{1}{h_{i}}A_{i}C^{i+1}_{i-1} + \frac{1}{h_{i}}B_{i}C^{i+1}_{i+1} - Q_{i}C^{i+1}_{i} = \frac{C^{i}_{i}}{\tau} Q_{i} = \frac{1}{h_{i}^{*}}(A_{i+1} + B_{i-1}) + \frac{1}{\tau} A_{i} = K_{i-1/2}\beta_{i-1/2} \frac{\exp(\beta_{i-1/2})}{h_{i}((\exp(\beta_{i-1/2})) - 1)} B_{i} = K_{i+1/2}\beta_{i+1/2} \frac{1}{h_{i}((\exp(\beta_{i+1/2})) - 1)}$$

Usual schemes

FTCS, Upwind, LaxWendrof

Monotone condition

$$2s \le 1, \quad s = K\tau/h^2,$$
$$\tau \le \frac{1}{2} \frac{h^2}{K}$$

Advective transport

Ornstein-Uhlenbeck process

TABLE I. Effectiveness of the difference schemes for the case of a uniform grid.								
N	$Scheme^a$	$X_L(m/s^{1/2})$	Pc	C_r^*	ϵ	e		
	\mathbf{FT}			$1.6 \cdot 10^{-12}$	0.015	0.08		
	Up			$1.6 \cdot 10^{-12}$	0.015	0.08		
1	LW	10^{-4}	$3.4 \cdot 10^{-12}$	$1.6 \cdot 10^{-12}$	0.015	0.08		
	CN			$1.8 \cdot 10^{-10}$	0.016	1.9		
	ad			$1.8 \cdot 10^{-10}$	0.014	1		
2	\mathbf{FT}	1	$3.1 \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$		0.08		
	Up			$1.4 \cdot 10^{-4}$		0.08		
	LW			$1.4 \cdot 10^{-4}$	0.014	0.08		
	CN			0.016		1.9		
	ad			0.017		1		

^a FT-FTCS,Up-Upwind,LW-Lax-Wendroff,CN-Crank-Nicolson,ad-elaborated scheme.

J.Rimshans and N.Smyth, Monotone exponential difference scheme for advection diffusion equation, Submitted for Numerical methods for partial differential equations, 2004.

Advective transport

Ornstein-Uhlenbeck process

Ν	Scheme	$X_L(m/s^{1/2})$	Pc	C_r^*	ε	e
1	CN	10^{-4}	$5.0 \cdot 10^{-13}$	$1.1 \cdot 10^{-9}$	0.015	$2.9 \cdot 10^{-3}$
	ad			$1.3 \cdot 10^{-9}$	0.039	1
2	CN	1	$5.0 \cdot 10^{-5}$	0.087	0.014	$2.9 \cdot 10^{-3}$
	ad			0.1	0.039	1
3	ad	10^4	1	10^4	0.006	1
4	ad	10^{8}	10^4	10^{8}	0.009	1

TABLE II. Effectiveness of the difference schemes for the case of a non-uniform grid.

J.Rimshans and N.Smyth, Monotone exponential difference scheme for advection diffusion equation, Submitted for Numerical methods for partial differential equations, 2004.

Convection-diffusion

Charge transfer

Ferroelectric materials under alternate driving: IMCS University of Latvia (Latvia)

J.Kaupužs, J.Rimshans, *Polarization kinetics in ferroelectrics with regard to fluctuations*, cond-mat/0405124, 2004.

GEANT

GEANT – GN2-Multi-Gigabit European Academic Network

Very Long Baseline Interferometry Network

