
Page 1Imperial College LondonUlrik Egede 21 October 2004

Status of distributed analysis
for LHCb

Presented by Ph.Charpentier
21 October 2004

U. Egede
Imperial College
London

Page 2Imperial College LondonUlrik Egede 21 October 2004

What is analysis in LHCb?

The aim of LHCb is to extract results on CP violation from rare B-
meson decays.

Detector will see the full event rate of 40 MHz from LHC collisions.
When data leaves the detector the rate should be around 200 Hz.

This is the job of the trigger and not for discussion today.
Output data in DST format will be divided into streams each containing
maybe 107 events per year.

These are the events that the end user will access for analysis.
Size for DST is about 150 kB per event.

For analysis we also need access to simulated data.
10 times higher statistics.
2 times larger size.

Page 3Imperial College LondonUlrik Egede 21 October 2004

Status of Data Challenge '04

There are 3 steps in DC '04
Step 1: Distributed production of a large dataset

Finished, but keep alive at low rate to be able to restart quickly.
Ran on a mixture of DIRAC (agent based) and LCG resources.
Status presented in many other places – see CHEP04 talks for a good
overview.

LCG2 overall efficiency: 61% -> too low for analysis!
Step 2: Stripping

Take the data produced in step1 and select events for individual physics
streams.

Each stream will select below 0.1% of generic B data.
Takes place at the Tier 1 centres (if SRM works, otherwise CERN)
All output will be distributed to all Tier 1 centres.
This is where we currently are in DC '04.

Page 4Imperial College LondonUlrik Egede 21 October 2004

Status of Data Challenge '04

Step 3: Distributed analysis
We want to demonstrate that any physicist within LHCb can run an
analysis on distributed resources.

Work pattern for this will briefly be:
Develop GAUDI algorithm for data analysis

Debug and test on small dataset on local disk
Define dataset to analyse

Selection through bookkeeping system
Divide dataset into bits that fit individual analysis jobs

Submit analysis
No specific knowledge of data location or at which Tier 1 site the analysis is

running on should be required.
Retrieve results

Get the output from jobs back to a single point and merge the data.

Page 5Imperial College LondonUlrik Egede 21 October 2004

A user view of an analysis – create algorithm

An analysis will define a work flow of algorithms to run.
The algorithms will be written mainly in C++ and run inside the Gaudi
framework.

Possibility to write algorithms in Python as well but no widespread use.

Code for analysis will be a mixture of
Standard LHCb algorithms

Under version control
User modified standard algorithms

This is typically for development of the standard tools
User specific algorithms

These might be different from job to job.
No version control.
This is a major difference to production style jobs.

Page 6Imperial College LondonUlrik Egede 21 October 2004

A user view of an analysis – configure job

LHCb jobs are configured through a set of options files.
These files have no state and can be pre-processed in a static way.

For analysis these options might be different from one job to the next.

ApplicationMgr.TopAlg += { "PreLoadParticles" };

// Set to use the CombinedParticleMaker
PreLoadParticles.PhysDesktop.ParticleMakerType = "CombinedParticleMaker";

// Default values for particle types to be made
// Note that when exclusive mode is selected the selection is done in
// the order set below
PreLoadParticles.PhysDesktop.CombinedParticleMaker.Particles = {"kaon", "pion" };

// Default value for particles to be selected exclusively or not
PreLoadParticles.PhysDesktop.CombinedParticleMaker.ExclusiveSelection = false;

// Default value for selection of kaon
// PreLoadParticles.PhysDesktop.CombinedParticleMaker.KaonSelection = {
// "det='RICH' k-pi='2.0' k-p='-2.0'" };

PreLoadParticles.PhysDesktop.CombinedParticleMaker.KaonSelection = {
"det='RICH' k-pi='-5.0'" };

PreLoadParticles.PhysDesktop.CombinedParticleMaker.PionSelection = { };
// "det='RICH' pi-k='-5.0'" };

Page 7Imperial College LondonUlrik Egede 21 October 2004

A user view of an analysis – test and run algorithm

For testing and running analysis the average physicist will always do
what seems the easiest way to get a result tomorrow!

Interaction with complicated systems that might bring long term time
savings never gain wide acceptance.

So the default behaviour for testing analysis is to fork jobs from the
command line.

For running larger scale jobs the incentive will always be to use what
worked yesterday.

For larger scale analysis jobs this means the PBS batch system at
CERN.

To change the behaviour to be for GRID jobs we can.
Make it easier to use than LSF

Tough but should be our final goal.
Limit the available CPU and data resources at CERN.

If (usable) alternatives not in place we will get very unpopular!

Page 8Imperial College LondonUlrik Egede 21 October 2004

A user view of an analysis – define dataset

Dataset for analysis needs specification.
Selection can happen in many ways

Fixed list taken from static web page.
Selection in a database

“The B to DsK background calibration set”.
“Same data as I used yesterday”.
Specific event

Event 2134539 from run 3473.
“My usual test data”

Notice that none of these cases contain anything about LFN, PFN or
other file specific information.

User will often be blind to if they read the data directly or read an
event summary file that simply points to the events.

Page 9Imperial College LondonUlrik Egede 21 October 2004

A user view of an analysis – keeping track and merging

For production of simulated events we know the importance of very
good bookkeeping.

In an analysis situation users love it if it comes for free.
The default way of working is to sort out in retrospect which jobs failed,
which produced corrupt output etc.

The last stage of an analysis is to pull all the results together.
Merge all histogram files.
Chain ROOT output files.
Normalise to analysed luminosity.
Search stdout for specific patterns.

Not nice but seen a lot.

Page 10Imperial College LondonUlrik Egede 21 October 2004

User requirements for distributed analysis system

For all users:
Responsive
Robust
Reliable

In addition for new users
Intuitive.
Clear error reporting.
Transparent to changes in middleware.

For more powerful users
Ability to deal with Event data collections.
Scripting language for job control.

Page 11Imperial College LondonUlrik Egede 21 October 2004

LHCb requirements

Ability to set priorities
Within LHCb we need the ability to control how resources allocated to
LHCb are used.

Accounting
From our current production we have seen the efficiency of monitoring to
track down errors and wrong configurations in hardware/LCG/jobs.

Monitoring at the job level required of:
CPU usage
Memory usage
Data requests
Efficiency
Users

Page 12Imperial College LondonUlrik Egede 21 October 2004

The GANGA project

The purpose of GANGA is to work as a wizard for LHCb users
running GAUDI applications.

Mainly we have running C++ analysis applications (DaVinci) in mind.
Further analysis (ROOT) is expected to happen locally (low number of
events, small events), although files will reside on the Grid.

We need to support the following behaviour:
writing new Gaudi algorithms, either in C++ or Python
modifying existing algorithms;
modifying job options of existing/new algorithms.

Data will now (and in the future?) be distributed mainly at Tier 1
centres but we should support Tier 2 and local data as well.

The input data will be data in POOL format.
Output from distributed analysis will be a combination of data in POOL
format, ROOT/HBOOK files and stdout/stderr.

Page 13Imperial College LondonUlrik Egede 21 October 2004

A quick reminder of GANGA

The user can monitor
jobs in the states:

New
Configured
Submitted
Running
Completed
Error – if reported!

Jobs are preserved
between invocations.

Status updated at
regular intervals.

Jobs in Ganga moves between different states.
This gives the bookkeeping

Page 14Imperial College LondonUlrik Egede 21 October 2004

A word on “catalogs”

Metadata catalog: BKDB
Current implementation well tested in DC03 and DC04 (several million
entries)

Uses specialised views on top of a generic set of tables (based on key-
value), depending on the type of usage. Very good scalability

Includes for the time being a replica table as well
Interested in developments in ARDA (also to input ideas)

In contact for a joint meeting

File Catalog
Two brands populated in parallel: BKDB and AliEn
Single interface to both (using XML-RPC)
Expect to be integrated within POOL through a simplified interface
Expect also an easy way to create XML slices for simple usage (no
navigation)

Page 15Imperial College LondonUlrik Egede 21 October 2004

Interaction with LHCb bookkeeping database
This allows a user to pick the data for analysis directly from within
GANGA, save it in a favorite’s catalog.

Page 16Imperial College LondonUlrik Egede 21 October 2004

Getting the analysis job to the Grid

Our aim is to get LHCb analysis to run on LCG resources
LCG2 today, gLite/EGEE, LCG3…

Obvious solution is to submit jobs directly to the LCG2 resource broker.
For several reasons we do not pursue this direction.

LCG UI impossible to install.
No way for LHCb to keep track of analysis… and 60% probability to get it back

Solution chosen is to use our infrastructure of production system (DIRAC) as
a portal to LCGn

We get most monitoring/accounting for free.
Only trivial DIRAC UI to install (one click). Shipped with Ganga
We can use the experience of running production jobs on LCG.
Will enable running on DIRAC sites as well.

Looking forward to using gLite (pre-)production system
Directly or through DIRAC
Catalogs should be accessible as well as data!

Page 17Imperial College LondonUlrik Egede 21 October 2004

Getting the analysis job to the Grid

General status
Submission of jobs to DIRAC works without any problems
Long standing problem with upload of user created shared libraries
solved.

Creation of XML POOL catalog slices to read data defined with Logical
filenames needs further testing.

Upload of user job options files works as required.
Running on DIRAC (agent) site

Jobs are picked up by the agent and run without problems.
Some mismatch in status flags between DIRAC and GANGA concerning run

status and if job finished in error or not.

Page 18Imperial College LondonUlrik Egede 21 October 2004

Getting the analysis job to the Grid

Running on LCG site
On the machine running GANGA client the user needs to obtain a grid
proxy

We have small (700 kB) tarball that can do grid-proxy-init (and a few other
related commands) that can be distributed with GANGA.

No need for full GT2 installation.
If proxy is available if will be uploaded in encrypted form to the DIRAC
WMS.

Job is then submitted to LCG from DIRAC WMS.
This scheme will not support any type of proxy renewal

All pieces tested individually but the full chain has not yet been
demonstrated.

Page 19Imperial College LondonUlrik Egede 21 October 2004

Getting the analysis job to the Grid

Running on Glite
See Andrew Maier's presentation from yesterday.
For future progress in this area we want to take advantage of the
modular structure of EGEE middleware.

Want to be able to use the DIRAC WMS instead of the default supplied by
gLite (we have all the infrastructure to interact with it)

Plan then to look at relative advantages. No “religious” opinion on which
WMS we will use.

Feedback on the EGEE design document.
Some initial feedback has already been given through ARDA.
We are in the process of evaluating it in more detail.

We would like the gLite (pre-)production service to run the current
middleware that we had hands on for 6 months.

No change of gear at this stage

Page 20Imperial College LondonUlrik Egede 21 October 2004

Command Line Interface

A GUI is good for providing overview and for new users to learn
about distributed analysis.

Many advanced users would like to write scripts that perform
repeated operations.

Solution is to have a python based CLI that interoperates with the
GUI.

A syntax has been defined and a subset of commands are implemented
within GANGA.

Many additional benefits
Will allow test jobs to be defined and run in new releases in an automatic

way.
Will allow prototyping of new plugins for applications or submission systems

to be tested without initially worrying about GUI.
Longer term plan is to implement GUI through the API defined by the
CLI.

Page 21Imperial College LondonUlrik Egede 21 October 2004

Command Line Interface

A few examples of what you can do in CLI
Create a job:

List jobs:

>>> j = Job()
>>> j.application = DaVinciApplication()
>>> j.backend = LSF()
>>> j.describe()
Job #5 [new] {'name': None}
backend <LSF>{'queue': '8nm'}
application <DaVinciApplication>{'outputfiles': [], 'inputfiles': [],
'options': None}

>>> jobs()
Statistics: 8 jobs

ID status name
1 completed
2 new
6 submitted myjob
8 submitted myjob

Page 22Imperial College LondonUlrik Egede 21 October 2004

Status of GANGA for LHCb analysis

