
1

A R
D A Metadata in the GRID

Overview
● Trying to define metadata
● Our Experiences with metadata catalogues

● Protocol problems
● Schema handling

● A generic definition of metadata
● The POSIX metadata interface
● Testing a Prototype Metadata Catalogue
● Ideas for the Future

Birger Koblitz
ARDA Workshop, October 18th, 2004

2

A R
D A What is Metadata?

1. Definition:
Metadata is information on contents of files.

(File Metadata)
Also other information found in DBs necessary to run
jobs on the grid, share problems:

● Grid authentication
● Overcoming firewalls
● Talking efficiently to DBs
● Replication
● Distributed updates?

2. Definition:
Metadata is all kind of data needed by jobs to

run on the grid
(apart from what is in the files).

3

A R
D A Hierarchy

Metadata needs a hierarchy to work well:
● Collect objects with shared attributes into collections
➔Allows queries on SQL tables

(also other storage possible: XML-DB, DB-Files...)
Analogy to file system (file metadata!):

Collection Directory
Object File

● Structure important for:
● Structured searches
● Schema handling
● Distribution of databases

4

A R
D A Experience

ARDA tested several Metadata solutions from the
experiments:

● CMS: RefDB
(PHP in front of MySQL, giving back XML tables)

● Atlas: AMI
(SOAP-Server in Java in front of MySQL)

● gLite (Alien Metadata)
(Perl in front of MySQL parsing command,

streaming back text)

Learned a lot looking at existing implementations:
● Common pattern seen
● Implementations also share the same problems

5

A R
D A Protocol: SOAP

Both AMI & RefDB ship responses in single XML package
➔They can't handle large requests

SOAP is particularly bad for Metadata:
● SOAP blows up data by factors 5-10
● SOAP for single, small queries

Metadata queries do require stateful connections with
Streamed Data / Iterators as a response

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140

T
im

e
 t

o
 c

o
m

p
le

ti
o

n
 [

s
]

Number of rows selected

100

40150

50

30 Clients

20

10

5

1

20 40 60 80 100 120 140

ti
m

e
-t

o
-c

o
m

p
le

te
 [

s]

#connections

Average response time

19.5Mb/conn.
5.5Mb/conn.
1.2Mb/conn.

0
0

100

200

300

400

500

600

700

800

512MB limit

6

A R
D A Streamed Data

gLite(Alien) streams
responses to the perl
implemented shell

Server

Client

 Perl-Process

 GASGSI

T
E

X
T

S
Q

L

Server

SQL-DB

GSI

STDOUT

MD-Interface

T
E

X
T

P
E
R

L

Errors

Time to completion

Clients

T
im

e
to

 C
o

m
p

le
tio

n
 [s

]

Selecting 2.5k files of 10k

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

7

A R
D A Schema Handling

Schema evolution not really tackled by current
Metadata Catalogues:

● Not really important for production...
● Admin can setup/copy new tables

(work on backend)...

RefDB and Alien don't do schema evolution at all.
AMI via admins adjusting tables.

For analysis, the following capabilities are mandatory:
● User must be able to discover schema
● User can setup/change schema

(He can then do it's own schema management, or
another application layer can take care)

● Offer solution for problems with storage types

8

A R
D A POSIX Metadata

POSIX defines extended attributes (Metadata) for files:
● Key-Value pairs associated with a file

● Key: \0-terminated string
● Value: Binary data of arbitrary length

● Copying a file copies metadata
● Metadata can be attached to directories
(no inheritance)

● Metadata attached to inode (security)

Extended attributes are now widely used
(NTFS, NFS, EXT2/3 SCL3, ReiserFS, JFS, XFS)

Used with Namespaces for ACLs

Metadata searches not defined yet (No FS-Impl.):
● Windows Longhorn (2005)
● ReiserFS 5

9

A R
D A Metadata on Linux

On ext3, XFS or ReiserFS, Linux supports extended
attributes (file metadata)

Can we have a similar semantics on the Grid?
PS: API is POSIX, not the commands!

koblitz@pcardabk:~/test$ touch a
koblitz@pcardabk:~/test$ attr --help
Usage: attr [-LRSq] -s attrname [-V attrvalue] pathname # set value
 attr [-LRSq] -g attrname pathname # get value
 attr [-LRSq] -r attrname pathname # remove attr
 -s reads a value from stdin and -g writes a value to stdout
koblitz@pcardabk:~/test$ attr -s gen -V lepto a
Attribute "gen" set to a 5 byte value for a:
lepto
koblitz@pcardabk:~/test$ attr -s version -V 1.0 a
Attribute "version" set to a 3 byte value for a:
1.0
koblitz@pcardabk:~/test$ getfattr -d a
file: a
user.gen="lepto"
user.version="1.0"
koblitz@pcardabk:~/test$ grep home /etc/fstab
/dev/hda5 /home ext3 defaults,acl,user_xattr,auto 0 0

10

A R
D A GRID Metadata

A possible Grid approach:
● Metadata attached to LFN
 LFN is entry point to File-Catalogue, attached

Metadata can be easily searched
● Files without LFN: GUID in special dirs
 Otherwise problems with global searches

● Metadata for directories should provide default
schemas/values for files
 Easy schema copying

● Restrict values to ASCII strings
 Backend is unknown: FileSystem/DB

● Need to define ways how to search for Metadata:
Search restricted to (sub-)directories
 Allows hierarchical databases, applicable for FS

11

A R
D A Synthesis

Experience
with

existing Software
POSIX

Prototype
as

Proof-Of-Concept

12

A R
D A Prototype

Client

Application

C++-API

Security wrapper
GSI

SSL

Terminal

T
E
X

T

SQL

Server

PostgreSQL

File

Server

PostgreSQL

Firewall

Perl-API

T
E

X
T

Server

ODBC
MD-Server

 Security wrapper
GSI SSL

SOAP

Prototype Implementation:
● Multi-threaded C++

server in front of
PostgreSQL

● Streams responses
asynchronously

● Uses ODBC as
RDBMS abstraction
Layer: ODBC-types

● Access restrictions via
ACLs

● Bison/flex parser for
queries
Other backends
Query validation
Security

13

A R
D A Metadata Protocol

The following protocol is proposed which clients talk to
servers via sockets:

● Use plain text (ASCII)
● Query consists of one line of command
● Response returns 1 line of return status (OK/Error)
and result line by line (and EOT at end)

● Result is in ASCII, user needs to encode/decode
● Commands are:

● addattr dir key type Add new key to schema
● removeattr dir key Removes key from schema
● getattr file(s) key1 key2... Returns value of keys
● setattr file [key value]n Sets keys to values (bulk upd.)
● listattr file Returns keys&type line-by-line
● clearattr file(s) key Resets a key
● find pattern 'query ' Returns list of files matching

pattern and query on keys

Client needs to Encode/Decode data, understand
schemas (but can discover them)

With R. Rocha(gLite), V. Pose

14

A R
D A Metadata API

POSIX defines the following commands
(implemented for compatibility):

● ssize_t getxattr(const char *path, const char *key,
 void *value, size_t size);
Returns value of key

● int setxattr(const char *path, const char *key,
 const void *value, size_t size, int flags)
Sets key to value

For bulk operations C++ better suited:
● int setAttr(const string &file, const list<string>&keys,

 const list<string> &attr)
● int getAttr(const string &pattern,const list<string> &keys,

 AttributeList &attributes)

InAttributeList keeps connection to server, allows
iteration on streamed data:

● int AttributeList::getRow(string &file,
 vector <string> &attributes)

Returns row of file and its attributes

15

A R
D A Example Session

koblitz@pcardabk:~/mi$ telnet pcardabk 8822
Connected to DB
Query> getattr /home/koblitz/a gen
 >select table_name from masterindex where directory='/home/koblitz';<
 >select gen from dir1 where file='a' and gen is not null;<

0
lepto
Query> addattr /home/koblitz version int
 >select table_name from masterindex where directory='/home/koblitz';<
 >alter table dir1 add version int;

0
Query> setattr /home/koblitz/a version 1.0
 >select table_name from masterindex where directory='/home/koblitz';<
 >select version from dir1 where version is not null limit 1;<
 >alter table dir1 add version varchar(256);<
 >insert into dir1 (file, version) values ('a' ,'1.0');<
 >update dir1 set version='1.0' where file='a';<

0
Query> getattr /home/koblitz/a version
 >select table_name from masterindex where directory='/home/koblitz';<
 >select version from dir1 where file='a' and version is not null;<

0
1.0
Query> getattr /home/koblitz/b version
 >select table_name from masterindex where directory='/home/koblitz';<
 >select version from dir1 where file='b' and version is not null;<

2
Query> quit

metadata=# select * from dir1;
 file | gen | events
------+--------+--------
 a | lepto | 101
 b | phytia | 101
 c | lepto | 20001
 d | lepto | 30001

metadata=# select * from dir1;
 file | gen | events | version
------+--------+--------+---------
 b | phytia | 101 |
 c | lepto | 20001 |
 d | lepto | 30001 |
 a | lepto | 101 | 1.0

16

A R
D A Distributed Metadata Ideas

Use PostgreSQL per-table replication with different
masters, make use of hierarchy:

CERN

SQL
File Owner Generator Events

a atlas pythia 3122002
b atlas pythia 2333442
c atlas pythia 4000000

Directory Table Master
/atlas/data/rec dir1 CERN

/cms/data index2 FZK
/cms/users dir2 CERN
/atlas/data/mc index3 Lyon

Master Index dir1

FZK

SQL
File Owner Generator Events

 a cms pythia 3122002
 b cms pythia 2333442
 c cms pythia 4000000

dir2
Firewall
Directory Table Master

/cms/data/muons dir2 CERN

/cms/data/lowpt dir3 FZK

/cms/data/bias dir4 CERN

index2
Plan for thesis subject

Client
Application

Talk directly?

17

A R
D A More Ideas

To be more generally useful:
● Create user indices with views:

● Or via inheritance:

Copies 2008 schema, select on 2009-data gives also
 2008 data.

(Both features available in PostgreSQL)

create view dirs as select generator, file from dir1
union

select generator, file from dir2;
CREATE INDEX gen_index ON dirs(generator);

CREATE TABLE “/atlas/data/2008” INHERITS “/atlas/data/2009”;

18

A R
D A Conclusions

● Many problems understood
● Seems possible to create metadata catalogue suitable
for very different metadata

● But room for special database solutions exist
(And could be pointed to from a central catalogue)

● Chose practical approach: Prototype
● Design and Implementation certainly challenging
Metadata experts from experiments need to work
 together, requirements must be named

