Inclusive Jet E_T Cross Sections at the LHC

S. Chekanov, S. Magill Argonne National Laboratory

One of the first physics measurements to come from LHC

-> evaluation of compositeness limit

For HERA-LHC Workshop -> study effects of evolution schemes on inclusive jet E_T cross section - PYTHIA vs CASCADE

Jets and Compositeness Limits

- Essentially, the limit on a contact interaction term is set by the highest E_T jet you see, times ~4
- Center-of-mass energy is immensely more valuable than integrated luminosity
 - Even the Tevatron 8.8% increase in energy triples the cross-section for jets above 500 GeV
 Imagine what a 600% increase buys you!

From T. LeCompte, ANL

Comparison of LHC/Tevatron

Scenario	Name	Instantaneous Luminosity	Time (s)	Detector Fraction	Integrated Luminosity
- 1	First store	5 x 10 ³⁰	1000	50%	2.5 nb ⁻¹
2	First good week	10 ³¹	105	100%	1 pb ⁻¹
3	First good month	$2 \ge 10^{31}$	106	100%	20 pb ⁻¹
4	Not so good year	10 ³²	107	100%	1 fb ⁻¹
5	Good 1 st year	1033	107	100%	10 fb ⁻¹

Scenario	Name	Energy Scale	Max Jet E _T	Limit
1	First store	20%	~750 GeV	~2.4 TeV
2	First good week	20%	~1600 GeV	~5.1 TeV
3	First good month	10%	~2 TeV	~7.2 TeV
4	Not so good year	5%	~3 TeV	~11.4 TeV
5	Good 1 st year	2%	~3.5 TeV	~13.7 TeV

ATLAS matches TEV limit with first store! - publish new limit after 2 days running

HERA (pdfs) \Rightarrow Tevatron (DGLAP) \Rightarrow LHC (+BFKL?)

Study Tools

MC Programs	pdfs	Evolution schemes	Physics processes
ΡΥΤΗΙΑ	\checkmark	DGLAP	quarks, gluons
CASCADE	-	CCFM, DGLAP	gg -> qq

CASCADE process : gg -> qq -> in DGLAP mode, gg -> qq -> in CCFM mode, kT factorization on ladder allows gg -> qq gg -> gq gg -> gg

PYTHIA processes	(DGLAP) for	pT_{min} > 40 GeV at \sqrt{s} = 14 TeV:
gg -> qq	1000 nb	
gq -> gq	23000 nb	(1/3 total cross section)
gg -> gg	32000 nb	(1/2 total cross section)
ff' -> ff'	3000 nb	
ff -> f'f'	21 nb	
ff -> gg	32 nb	

Jet Properties

Generated events from CASCADE with DGLAP and CCFM evolution schemes :

Compare shape of rapidity (Y) and $x_{1,2}$ distributions (k_T Algorithm)

CCFM - slightly more forward and slightly lower x

from Durham online pdf generator

Parton Evolution Comparison

Shape : CCFM (BFKL) harder than DGLAP

Cross Sections (not shown) : CCFM ~ 6 X DGLAP

Issues :

 Is this comparison fair? gg -> qq only in DGLAP?
 DGLAP CASCADE = gg -> qq in PYTHIA?

PYTHIA Process 53 - $gg \rightarrow q\overline{q}$

Shape :

- 1) CCFM (BFKL) still harder than DGLAP
- 2) PYTHIA gg -> qq harder than CASCADE DGLAP?

Cross Sections : PYTHIA gg -> qq > CASCADE DGLAP gg -> qq?

Issues :

- 1) Our mistake?
- 2) Require heavy quarks in jets to limit other processes?

Process Comparison - HQ requirement

Shape :
1) CCFM not harder than DGLAP anymore
2) PYTHIA still harder than CASCADE DGLAP

Cross Sections :

- PYTHIA 28,53,68 almost total - dominated by 53 (gg -> QQ)
- 2) Disagreement between PYTHIA gg -> QQ and CASCADE DGLAP even greater than before?
 2) DVTUTA members

3) PYTHIA quark processes (11,12,13) ≈ CASCADE CCFM (BFKL)

Summary - Issues to Resolve

- 1) More questions than answers at this mid-workshop point!!
- 2) Why doesn't the CASCADE DGLAP cross section = PYTHIA process 53 (gg -> qq)?
- 3) Does CASCADE CCFM really include all gluon initiated processes (28,53,68 in PYTHIA) with correct cross sections?
- 4) Do we have any hope of adding CASCADE CCFM to the quark processes of PYTHIA to get a consistent jet E_T spectrum? Only for heavy quarks in the final state?

Summary - Study Goals

BFKL evolution produces a ~harder jet ET spectrum at the LHC for gluon-dominated processes

Understand our issues and how to use the tools we have properly

- consistent process cross sections between MC models
- combining processes from different MC models
- using selection cuts to simplify comparisons, i.e., heavy quarks, Y range

Show LHC jet ET spectrum for all processes assuming DGLAP or BFKL (as implemented in CCFM scheme) evolution of pdfs

- characterize as difference vs $E_{\rm T}$
- show enhanced differences for heavy quarks?

- including multiple interactions, 25 bunch crossings, simulated detector effects