<u>A preliminary study of</u> Z+b production in ATLAS

S.Diglio, F.Petrucci, <u>A.Tonazzo</u>, M.Verducci University of Roma Tre and INFN

- The D0 measurement of $\sigma(Z+b)/\sigma(Z+jet)$
- Expectations at LHC
- Preliminary study in ATLAS
 - Event selection criteria
 - Expected signal and background samples
 - Outlook

Motivations for Z+b analysis

A detailed discussion has been given in the previous talk by F.Maltoni (cfr Phys.Rev.D69:074021,2004)

• Sensitivity to b content of the proton

• Background to Higgs search

The D0 measurement of Zb/Zj

- The D0 collaboration has recently measured $\sigma(Z+b)/\sigma(Z+jet)$ with $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$
 - \rightarrow D0 note 4388 available on http://www-d0.fnal.gov
- The ratio is, at first order, insensitive to detector effects (lepton trigger efficiencies, jet energy scale, jet and lepton reconstruction efficiencies, energy resolution...)
 - but it is sensitive to differences between light and b-jets

The D0 measurement of Zb/Zj

Analysis flow:

- select events with $Z \rightarrow ee$ or $Z \rightarrow \mu\mu$ + jet
- apply b-tagging
- extract content of b, c and light quarks (assuming Nc/Nb from theory)

Fitted values for selected sample in 184 pb⁻¹

	Dielectron channel	Dimuon channel
Nb	61.0	18.7
Nc	102.8	31.6
N _{light}	1797.4	1273.4

The D0 measurement of Zb/Zj

Theory NLO (F.Maltoni et al.): 0.018 +/- 0.004

Main sources of systematic uncertainty:

- b/c tagging efficiencies
- background estimation
- theory uncertainty on σ(Z+c)/σ(Z+b)

Expectations at LHC

As suggested by Maltoni et al., the measurement of Z+b production at LHC should be even more interesting than at Tevatron for several reasons:

- The contribution of Zbb is much less significant, so most of the cross-section comes from Zb ⇒ Better sensitivity to b PDF
- The total inclusive cross-section is larger by about a factor 50
- There will be a smaller background of tagged Z+c events
- The cross-section for Zj events, a source of background when the light quark jet is mis-tagged as b jet, is less significant

Expectations at LHC

		Taxatran				
Cross sections (pb)		Ievatron				
	ZQ	$Z(Q\overline{Q})$	ZQj	$ZQ\overline{Q}$	ZQ inclusive	
$gb \rightarrow Zb$	(8.23) 10.4	0.169	2.19	0.631	$13.4 \pm 0.9 \pm 0.8 \pm 0.8$	
$q\bar{q} \rightarrow Z b\bar{b}$	3.32	1.92		1.59	6.83	
$gc \rightarrow Zc$	(11.3) 16.5	0.130	3.22	0.49	$20.3^{+1.8}_{-1.5}\pm0.1^{+1.3}_{-1.2}$	
$q\bar{q} \rightarrow Zc\bar{c}$	5.66	6.45	_	1.70	13.8	
	Zj		Z_{jj}		Zj inclusive	
$q\bar{q} \rightarrow Zg, gq \rightarrow Zq$	(876) 870		137		$1010^{+44}_{-40}{}^{+9}_{-2}{}^{+7}_{-12}$	

from Phys.Rev.D69:074021,2004

jets with Pt>15 GeV $|\eta|$ <2.5

Cross sections (pb)		LHC			
	ZQ	$Z(Q\overline{Q})$	ZQj	$ZQ\overline{Q}$	ZQ inclusive
$gb \rightarrow Zb$	(826) 649	11.3	304	78.1	$1040^{+70}_{-60}{}^{+70}_{-100}{}^{+30}_{-50}$
$q\bar{q} \rightarrow Z b\bar{b}$	24.3	13.5	_	11.4	49.2
$gc \rightarrow Zc$	(989) 921	8.8	396	61.5	$1390 \pm 100^{+60}_{-70} {}^{+40}_{-80}$
$q\bar{q} \rightarrow Zc\bar{c}$	36.7	41.7	_	11.3	89.7
	Zj	Zj		jj	Zj inclusive
$q\bar{q} \rightarrow Zg, gq \rightarrow Zq$	(13500)	11600	4270		$15870^{+900}_{-600}{}^{+60}_{-300}{}^{+300}_{-500}$

HERA-LHC, CERN Oct.11 2004

Preliminary study of Z+b in ATLAS / 7

Preliminary study of Z+b in ATLAS

We have performed a preliminary study on the feasibility of Z+b measurement in ATLAS

- A sample of Z+jet events has been generated with PYTHIA and processed through a fast simulation of the ATLAS detector (ATLFAST)
- Only $Z \rightarrow \mu \mu$ has been considered
- Efficiencies on signal and background have been evaluated, with two independent b-jet identification methods
 - soft lepton tagging
 - inclusive b-tagging of jets
- Expected signal and background samples have been estimated, based on the cross-sections from F.Maltoni et al., for an integrated luminosity of 10 fb⁻¹ (1 year at initial LHC luminosity, 10³³ cm⁻²s⁻¹)

Z+b in ATLAS: event selection

Event selection – first step

- Two isolated muons with Pt > 20 GeV/c opposite charge invariant mass close to Mz (80 GeV<Mµµ<105 GeV)
- The two muons also provide the trigger for this type of events

cross-checked with a detailed simulation of the muon spectrometer and full track reconstruction in the muon spectrometer

Z+b in ATLAS: soft muon tagging

Event selection 1 – Soft muon analysis

• Require a third muon (soft, non–isolated) in the barrel region with a minimum Pt

Cut on 3rd muon	Efficiency on	Nb	Nc	Ntot
Pt	Ζ (μμ)+b	in 10 fb-1	in 10 fb-1	in 10 fb-1
Pt>4 GeV/c	6.0%	24400	9900	49700
Pt>5 GeV/c	4.4%	18300	6100	35300
Pt>6 GeV/c	3.3%	13200	3800	24800

The efficiency is small (BR($b\rightarrow\mu$)~10%), but the selected sample has high purity (~50%)

Z+b in ATLAS: soft muon tagging

3rd muon Pt distributions

HERA-LHC, CERN Oct.11 2004

Z+b in ATLAS: inclusive b-tagging

Event selection 2 – <u>Inclusive b-tagging of jets</u>

• Require a b-tagged jet with Pt>15 GeV

b-tagging efficiency: on b jets ~ 31%

on c jets ~ 6%

on light q and gluon jets ~ 1.5%

Efficiency on	Nb	Nc	Ntot
Ζ(μμ)+b	in 10 fb-1	in 10 fb-1	in 10 fb-1
21 %	87000	25000	~250000

Very high statistics, good purity (~35%)

Z+b in ATLAS: inclusive b-tagging

Z+b in ATLAS: summary

- A very preliminary study of Z+b production in ATLAS has been done, using a fast detector simulation
- Two different b-tagging algorithms have been considered:
 - Soft muon
 - Inclusive b-tagging of jets
- The selected samples have high efficiency and very good purity
- The expected statistics is very high
- → The study is worth being carried on.....

Z+b in ATLAS: outlook

The expected statistics is very high, so

- The measurement error will be dominated by systematic effects
 Not evaluated yet, but
 - Theory uncertainty on $\sigma(Z+c)$ is smaller than at Tevatron
 - Experimental uncertainties evaluated from data will have small statistical errors
- Possibility to explore differential distributions
 - η of the Z and the b $\leftrightarrow x_1 x_2$ of the initial partons

Work will continue on

- more appropriate MC generators
- detailed detector simulation
- proper inclusion of all the backgrounds
- other/new/(better?) b-tagging algorithms
- estimate of systematic uncertainties, to infer the expected sensitivity to b PDF
- potential of differential distribution analysis