CERN, 11 October '04

An Improved Splitting Function for Small-x Evolution

Matching together GLAP and BFKL

G. Altarelli

CERN

Based on G.A., R. Ball, S.Forte
hep-ph/9911273 (NPB 575,313)
hep-ph/0001 157 (lectures)
hep-ph/0011270 (NPB 599,383)
hep-ph/0104246

More specifically on

> hep-ph/0109178 (NPB 621,359)
and on hep-ph/0306156 (NPB 674,459), hep-ph/0310016, hep-ph/0407153

Related work (same physics, similar conclusion, different techniques): Ciafaloni, Colferai, Salam, Stasto [see also Thorne]

Our goal is to construct a relatively simple, closed form, improved anomalous dimension $\gamma_{l}(\alpha, N)$ (or splitting function $\mathrm{P}_{\mathrm{l}}(\alpha, \mathrm{x})$)
$P_{I}(\alpha, x)$ should

- reduce to perturbative results at large x
- contain BFKL corrections at small x
- include running coupling effects
- be sufficiently simple to be included in fitting codes
and of course
- closely reflect the trend of the data
G. Altarelli

Moments

$$
\xi=\log \frac{1}{x} ; \quad t=\log \frac{Q^{2}}{\mu^{2}}
$$

$$
G\left(x, Q^{2}\right) \equiv G(\xi, t)=x\left[g\left(x, Q^{2}\right)+k \Sigma\left(x, Q^{2}\right)\right]
$$

For each moment: singlet eigenvector with largest anomalous dimension eigenvalue

$$
\underset{\boldsymbol{y}}{G(N, t)}=\int_{0}^{1} x^{N-1} G\left(x, Q^{2}\right) d x=\int_{0}^{\infty} e^{-N \xi} G(\xi, t) d \xi
$$

Mellin transf. (MT)

$$
G(\xi, t)=\int_{-i \infty}^{+i \infty} e^{N \xi} G(N, t) \frac{d N}{2 \pi i}
$$

$$
\text { t-evolution eq.n } \quad \text { Inverse MT }(\xi>0)
$$

$$
\frac{d}{d t} G(N, t)=\gamma(N, \alpha(t)) G(N, t)
$$

$$
\begin{gathered}
\gamma(N, \alpha)=\alpha \cdot \gamma_{1 l}(N)+\alpha^{2} \cdot \gamma_{2 l}(N)+\ldots \\
\text { Pert. Th.: } \underbrace{(N O}_{\text {known }} \underbrace{N L O}
\end{gathered}
$$

Recall: $\quad \gamma(N)=\int_{0}^{1} x^{N} P(x) d x$

$$
P(x)=1 / x(\ln 1 / x)^{n} \quad \Longrightarrow \gamma(N)=n!/ N^{n+1}
$$

At 1-loop:

$$
\alpha \cdot \gamma_{1 l}(N)=\alpha \cdot\left[\frac{1}{N}-A(N)\right]
$$

This corresponds to the "double scaling" behavior at small x :

$$
G(\xi, t) \sim \exp \left[\sqrt{\frac{4 n_{C}}{\pi \beta_{0}} \cdot \xi \cdot \frac{\log Q^{2} / \Lambda^{2}}{\log \mu^{2} / \Lambda^{2}}}\right] \quad \beta(\alpha)=-\beta_{0} \alpha^{2}+\ldots
$$

A. De Rujula et al ‘74/Ball, Forte
G. Altarelli

Amazingly supported by the data

In principle the BFKL approach provides a tool to control $(\alpha / N)^{n}$ corrections to $\gamma(N, \alpha)$,
that is $1 / x(\alpha \log 1 / x)^{n}$ to splitting functions.
Define t- Mellin transf.:

$$
G(\xi, M)=\int_{-\infty}^{+\infty} e^{-M t} G(\xi, t) d t
$$

with inverse:

$$
G(\xi, t)=\int_{-i \infty}^{+i \infty} e^{M t} G(\xi, M) \frac{d M}{2 \pi i}
$$

ξ-evolution eq.n (BFKL) [at fixed α]:

$$
\frac{d}{d \xi} G(\xi, M)=\chi(M, \alpha) G(\xi, M)
$$

with $\quad \chi(M, \alpha)=\alpha \cdot \chi_{0}(M)+\alpha^{2} \cdot \chi_{1}(M)+\ldots$
\star known $<$
G. Altarelli

Bad behaviour, bad convergence

At 1-loop:

$$
\psi(M)=\Gamma^{\prime}(M) / \Gamma(M)
$$

$$
\alpha \chi_{0}(M)=\frac{\alpha n_{C}}{\pi} \int_{0}^{1}\left[z^{M-1}+z^{-M}-2\right] \frac{d z}{1-z}=\frac{\alpha n_{C}}{\pi} \cdot[2 \psi(1)-\psi(M)-\psi(1-M)]
$$

Near M=0:

$$
\alpha \chi_{0}(M) \sim \frac{\alpha n_{C}}{\pi}\left[\frac{1}{M}+2 \zeta(3) M^{2}+2 \zeta(5) M^{4}+\ldots .\right]
$$

At $M=1 / 2$

$$
\lambda_{0}=\alpha \chi_{0}\left(\frac{1}{2}\right)=\frac{\alpha n_{C}}{\pi} 4 \ln 2=\alpha c_{0} \sim 2.65 \alpha \sim 0.5
$$

G. Altarelli

The minimum value of $\alpha \chi_{0}$ at $M=1 / 2$ is the Lipatov intercept:

$$
\lambda_{0}=\alpha \chi_{0}\left(\frac{1}{2}\right)=\frac{\alpha n_{C}}{\pi} 4 \ln 2=\alpha c_{0} \sim 2.65 \alpha \sim 0.5
$$

It corresponds to (for $x->0$):

$$
x P(x) \sim x^{-\lambda 0}
$$

Too hard, not supported by data
But the NLO terms
are very large

In the region of t and x where both

$$
\begin{aligned}
& \frac{d}{d t} G(N, t)=\gamma(N, \alpha) G(N, t) \\
& \frac{d}{d \xi} G(\xi, M)=\chi(M, \alpha) G(\xi, M)
\end{aligned}
$$

are approximately valid, the "duality" relation holds:

$$
\chi(\gamma(\alpha, N), \alpha)=N
$$

We skip the proof
Note: γ is leading twist while χ is all twist. Still the two perturbative exp.ns are related and improve each other.
Non perturbative terms in χ correspond to power or exp. suppressed terms in γ.
G. Altarelli
$\chi(\gamma(\mathrm{N}))=\mathrm{N}$

$$
\begin{aligned}
& \text { Example: if } \chi(M, \alpha)=\alpha\left[\frac{1}{M}+\frac{1}{1-M}\right] \quad \\
& \Longrightarrow \alpha\left[\frac{1}{\gamma}+\frac{1}{1-\gamma}\right]=N \quad \Longrightarrow \gamma=\frac{1}{2}\left[1 \pm \sqrt{1-\frac{4 \alpha}{N}}\right]
\end{aligned}
$$

G. Altarelli

For example at 1-loop: $\quad \chi_{0}\left(\gamma_{s}(\alpha, N)\right)=N / \alpha$
χ_{0} improves γ by adding a series of terms in $(\alpha / N)^{n}$:

$$
\chi_{0}->\gamma_{s}\left(\frac{\alpha}{N}\right) \quad \gamma_{s}\left(\frac{\alpha}{N}\right)=\sum_{k} c_{k}\left(\frac{\alpha}{N}\right)^{k}
$$

$\gamma_{D L}(\alpha, N)=\alpha \cdot \gamma_{1 l}(N)+\gamma_{s}\left(\frac{\alpha}{N}\right)+\ldots$-double count.

This is the naive result from GLAP+(LO)BFKL The data discard such a large raise at small x
G. Altarelli

Similarly it is very important to improve χ by using γ_{11}.

$$
\text { Near } M=0, \chi_{0} \sim 1 / M, \chi_{1} \sim-1 / M^{2}
$$

Duality + momentum cons. $(\gamma(\alpha, N=1)=0)$

$$
\chi(\gamma(\alpha, N), \alpha)=N \longrightarrow \chi(0, \alpha)=1
$$

$$
\left\{\begin{array}{c}
\gamma(\chi(\mathrm{M}))=\mathrm{M} \rightarrow \gamma_{1 l} \Rightarrow \chi_{s}\left(\frac{\alpha}{M}\right) \\
\chi_{s}\left(\frac{\alpha}{M}\right)=\sum_{k} d_{k}\left(\frac{\alpha}{M}\right)^{k}
\end{array}\right.
$$

$$
\chi_{D L}(M, \alpha)=\alpha \cdot \chi_{0}(M)+\chi_{s}\left(\frac{\alpha}{M}\right)+\ldots \text {-double count. }
$$

G. Altarelli

Double Leading Expansion
$\gamma(N, \alpha)=\alpha \cdot \gamma_{1 l}(N)+\ldots \sim \alpha \cdot\left[\frac{1}{N}-A(N)\right]$
Momentum conservation: $\gamma(1, \alpha)=0 \quad \longrightarrow A(1)=1$ Duality: $\quad \gamma(\chi(M))=M$

$$
\alpha \cdot\left[\frac{1}{\chi}-A(\chi)\right]=M
$$

$\longrightarrow \chi=\frac{\alpha}{M+\alpha A(\chi)} \longrightarrow \chi(M \sim 0) \sim \frac{\alpha}{M+\alpha A(1)} \sim \frac{\alpha}{M+\alpha}$ $\chi_{D L}(M, \alpha)=\alpha \cdot \chi_{0}(M)+\chi_{s}\left(\frac{\alpha}{M}\right)+\ldots$-double count.

$$
\chi_{0}(M)=\alpha \cdot\left[\frac{1}{M}+0\left(M^{2}\right)\right]
$$

G. Altarelli
$\gamma_{D L}(\alpha, N)=\alpha \cdot \gamma_{1 l}(N)+\gamma_{s}\left(\frac{\alpha}{N}\right)+\ldots$-double count. $\chi_{D L}(M, \alpha)=\alpha \cdot \chi_{0}(M)+\chi_{s}\left(\frac{\alpha}{M}\right)+\ldots$-double count.

G. Altarelli

$$
\text { DL, LO: } \chi_{D L}(M, \alpha)=\alpha \cdot \chi_{0}(M)+\chi_{s}\left(\frac{\alpha}{M}\right)+\ldots \text {-double count. }
$$

A considerable improvement is obtained by including running coupling effects
Recall that the x-evolution equation was at fixed α

$$
\frac{d}{d \xi} G(\xi, M)=\chi(M, \alpha) G(\xi, M)
$$

In the following:

- Summary of general results
- Airy approximation
- Application to our problem
G. Altarelli

The implementation of running coupling in BFKL is not simple. In M-space α becomes an operator

$$
\alpha(t)=\frac{\alpha}{1+\beta_{0} \alpha t} \Rightarrow \frac{\alpha}{1-\beta_{0} \alpha \frac{d}{d M}}
$$

In leading approximation:

$$
\begin{aligned}
\frac{d}{d \xi} G(\xi, M)= & \chi(M, \alpha) G(\xi, M) \\
& \frac{d}{d \xi} G(\xi, M)=\frac{\alpha}{1-\beta_{0} \alpha \frac{d}{d M}} x_{0}(M) G(\xi, M)
\end{aligned}
$$

A perturbative expansion in β_{0} leads to validity of duality with modified χ and γ :

$$
\Delta \chi_{1}(M)=\beta_{0} \frac{\chi_{0} "(M) \chi_{0}(M)}{2 \chi_{0}{ }^{\prime}(M)} \quad \Delta \gamma_{s s}(N)=-\beta_{0} \frac{\chi_{0}{ }^{\prime \prime}\left(\gamma_{s}\right) \chi_{0}\left(\gamma_{s}\right)}{2 \chi_{0}^{\prime 2}\left(\gamma_{s}\right)}
$$

But this expansion fails near $M=1 / 2: \chi_{0}{ }^{\prime}(1 / 2)=0$
G. Altarelli

By taking a second MT the equation can be written as [$\mathrm{F}(\mathrm{M})$ is a boundary condition]

$$
\left(1-\beta_{0} \alpha \frac{d}{d M}\right) N G(N, M)+F(M)=\alpha \chi_{0}(M) G(N, M)
$$

It can be solved iteratively

$$
G(N, M)=\frac{F(M)}{N-\alpha \chi_{0}(M)}+\frac{\alpha \beta_{0}}{N-\alpha \chi_{0}(M)} \frac{d}{d M} \frac{F(M)}{N-\alpha \chi_{0}(M)}+\ldots
$$

or in closed form:

$$
\begin{gathered}
G(N, M)=H(N, M)+ \\
+\int_{M_{0}}^{M} d M \exp \left[\frac{M-M}{\beta_{0} \alpha}-\frac{1}{\beta_{0} N} \int_{M}^{M} \chi_{0}\left(M^{\prime}\right) d M^{\prime}\right] \frac{F(M)}{\beta_{0} \alpha N}
\end{gathered}
$$

$H(N, M)$ is a homogeneous eq. sol. that vanishes faster than all pert. terms and can be dropped.
G. Altarelli

The following properties can be proven:

- From $\mathrm{G}(\mathrm{N}, \mathrm{M})$ we can obtain $\mathrm{G}(\mathrm{N}, \mathrm{t})$ and evaluate it by saddle point expansion. The perturbative $\mathrm{G}(\mathrm{N}, \mathrm{t})$ is reproduced and satisfies duality (in terms of modified χ and γ according to the perturbative results singular at $\left.\chi^{\prime}(1 / 2)=0\right)$ and factorisation (no t-dep. from the boundary condition).
- From $G(N, M)$ we can get $G(\xi, M)$. This presents unphysical oscillations when $\chi>0$ for all M .

These problems can be studied by using the Airy expansion: The asymptotics is fixed by the behaviour of χ near the minimum, where a quadratic form is taken:

Lipatov; Collins,Kwiecinski;
Thorne; Ciafaloni, Taiuti,Mueller

$$
\chi_{\text {eff }}(M)=c+\frac{1}{2} k\left(M-\frac{1}{2}\right)^{2}
$$

G.A., R. Ball, S.Forte, hep-ph/0109178 (NPB 621,359)

For a quadratic kernel the explicit solution is
where

$$
G(N, t)=K(N) \exp \frac{1}{2 \beta_{0} \alpha(t)} \cdot \operatorname{Ai}[z(\alpha(t), N)]
$$

$$
\begin{aligned}
& z(\alpha(t), N)=\left(\frac{2 \beta_{0} N}{k}\right)^{\frac{1}{3}} \cdot \frac{1}{\beta_{0}} \cdot\left[\frac{1}{\alpha(t)}-\frac{c}{N}\right] \\
& K(N)=\exp \frac{-1}{2 \beta_{0} \alpha} \cdot\left(\frac{2 \beta_{0} N}{k}\right)^{\frac{1}{3}} \cdot \frac{1}{\pi N}
\end{aligned}
$$

From $\quad G(N, t)=K(N) \exp \frac{1}{2 \beta_{0} \alpha(t)} \cdot A i[z(\alpha(t), N)]$
one obtains $\mathrm{G}(\mathrm{x}, \mathrm{t})$ by inv. MT

$$
G(\xi, t)=\int_{-i \infty}^{+i \infty} e^{N \xi} G(N, t) \frac{d N}{2 \pi i}
$$

The asymptotics is dominated by the saddle condition:

$$
\xi=-\frac{1}{A i[z(\alpha(t), N)]} \cdot \frac{d}{d N} A i[z(\alpha(t), N)]
$$

For $\mathrm{c}>0$ at not too large ξ this is satisfied at large N . When ξ increases N gets smaller. Then oscillations start, d / dN changes sign and the real saddle is lost.
$G(\xi, t)$ starts oscillating, in agreement with the general analysis.
G. Altarelli

Ai[z(N)]

The dual anom. dim. γ_{A} is given by

$$
\begin{aligned}
& \gamma_{A}(\alpha(t), N)=\frac{d}{d t} \log G(N, t)=\frac{1}{2}+\left(\frac{2 \beta_{0} N}{k}\right)^{\frac{1}{3}} \frac{A i^{\prime}(z)}{A i(z)} \\
& \xrightarrow[\mathrm{z} \text { large }]{ } \frac{1}{2}-\sqrt{\frac{2}{k}\left(\frac{N}{\alpha(t)}-c\right)}-\frac{1}{4} \cdot \frac{\beta_{0} \alpha}{1-\frac{\alpha}{N} c}+\ldots \\
& z(\alpha(t), N)=\left(\frac{2 \beta_{0} N}{k}\right)^{\frac{1}{3}} \cdot \frac{1}{\beta_{0}} \cdot\left[\frac{1}{\alpha(t)}-\frac{c}{N}\right]
\end{aligned}
$$

The effect of running on χ is a softer small-x behaviour

$$
x P \sim x^{-\lambda} \quad \Longrightarrow x P \sim x^{-N o}
$$

G. Altarelli

As an effect of running, the small-x asymptotics is much softened:

$$
x P \sim x^{-\lambda} \quad \Longrightarrow x P \sim x^{-N o}
$$

The Airy result is free of the perturbative β_{0} singularities.
At NLL order we can add the full γ_{A} and subtract its large N limit:

$$
\begin{gathered}
\chi_{0}->\gamma_{s} \quad \chi_{1}->\gamma_{s s} \\
\gamma(\alpha, N) \approx \gamma_{s}\left(\frac{\alpha}{N}\right)+\alpha \gamma_{s s}\left(\frac{\alpha}{N}\right)+\alpha \Delta \gamma_{s s}\left(\frac{\alpha}{N}\right)+ \\
+\gamma_{A}(\alpha, N)-\frac{1}{2}+\sqrt{\frac{2}{k}\left(\frac{N}{\alpha}-c\right)}+\frac{1}{4} \cdot \frac{\beta_{0} \alpha}{1-\frac{\alpha}{N} c}
\end{gathered}
$$

The last term cancels the sing. of $\alpha \Delta \gamma_{\text {ss }}$ ($\mathrm{N}=\alpha \mathrm{c}$ corresponds to $\mathrm{M}=1 / 2$)
G. Altarelli

The goal of our recent work is to use these results to construct a relatively simple, closed form, improved anom. dim. $\gamma_{1}(\alpha, N)$ or splitting funct.n $P_{I}(\alpha, x)$
G.A., R. Ball, S.Forte, hep-ph/ 0306156 (NPB 674,459), 0310016

$$
P_{1}(\alpha, x) \text { should }
$$

- reduce to pert. result at large x
- contain BFKL corr's at small x
- include running coupling effects (Airy)
- be sufficiently simple to be included
in fitting codes
and of course
- closely follow the trend of the data
G. Altarelli

Improved anomalous dimension

1st iteration: optimal use of $\gamma_{11}(\mathrm{~N})$ and $\chi_{0}(\mathrm{M})$

$$
\begin{gathered}
\gamma_{I}(\alpha, N)=\alpha \gamma_{1 l}(N)+\gamma_{s}\left(\frac{\alpha}{N}\right)-\frac{\alpha n_{c}}{\pi N}+ \\
+\gamma_{A}(\alpha, N)-\frac{1}{2}+\sqrt{\frac{2}{k_{0}}\left(\frac{N}{\alpha}-c_{0}\right)}+\frac{1}{4} \beta_{0} \alpha-\text { mom sub }
\end{gathered}
$$

Properties:

- Pert. Limit $\alpha->0$, N fixed

$$
\gamma_{I}(\alpha, N) \longrightarrow \propto \gamma_{1 I}(N)+\mathrm{o}\left(\alpha^{2}\right)
$$

- Limit $\alpha->0, \alpha / N$ fixed

$$
\gamma_{I}(\alpha, N) \longrightarrow \alpha \gamma_{1 l}(N)+\gamma_{s}\left(\frac{\alpha}{N}\right)-\frac{\alpha n_{c}}{\pi N}+\mathrm{o}(\alpha \alpha / \mathrm{N})
$$

$$
\begin{aligned}
& \alpha \gamma_{1 l}(N) \longrightarrow \text { Pole in } 1 / N \\
& \gamma_{s}\left(\frac{\alpha}{N}\right) \longrightarrow \text { Cut with branch in } \alpha c_{0}
\end{aligned}
$$

the Airyıferm cancels the cut and introduces a pole at $\mathrm{N}=\mathrm{N}_{0}$

- $\gamma_{I}(\alpha, N)=\alpha \gamma_{1 l}(N)+\gamma_{s}\left(\frac{\alpha}{N}\right)-\frac{\alpha n_{c}}{\pi N}+$
$+\gamma_{A}(\alpha, N)-\frac{1}{2}+\sqrt{\frac{2}{k_{0}}\left(\frac{N}{\alpha}-c_{0}\right)}+\frac{1}{4} \beta_{0} \alpha-$ mom sub
- $\gamma_{\mathrm{DL}}\left(\alpha_{1} N\right)=\alpha \gamma_{1 l}(N)+\gamma_{s}\left(\frac{\alpha}{N}\right)-\frac{\alpha n_{c}}{\pi N}$ - mom sub
G. Altarelli

Here is the same plot for the corresponding splitting fncts.
Note: for $\alpha_{\mathrm{s}}=0.2$ the pole in GLAP is $\sim 0.191 / \mathrm{N}$ while the pole in γ_{1} is $\sim 0.014 /\left(\mathrm{N}-\mathrm{N}_{0}\right)$ (only visible at very small x)

G. Altarelli Limit on bulk of the data with reasonable Q^{2}

We can add the 2-loop perturbative result $\gamma_{2 l}$:
$\gamma_{I}^{N L}(\alpha, N)=\alpha \gamma_{1 l}(N)+\alpha^{2} \gamma_{2 l}(N)+\gamma_{s}\left(\frac{\alpha}{N}\right)-\frac{\alpha n_{c}}{\pi N}+$
$+\gamma_{A}(\alpha, N)-\frac{1}{2}+\sqrt{\frac{2}{k_{0}}\left(\frac{N}{\alpha}-c_{0}\right)}+$ $+\frac{1}{4} \beta_{0} \alpha\left(1+\frac{\alpha}{N} c_{0}\right)-$ mom.sub

This is our main result ${ }^{0.6}$
G. Altarelli

Preview of our next paper (in advanced preparation)

BFKL kernel symmetric in $\mathrm{k}_{1}{ }^{2}, \mathrm{k}_{2}{ }^{2}$ (gluon virtualities)
Mellin variable $\quad\left(\frac{s}{k_{1} k_{2}}\right) \quad$ in DIS $Q^{2} \gg \mathrm{k}^{2} \quad\left(\frac{s}{Q^{2}}\right)$
The symm. and the DIS kernels are related by:

$$
\chi \equiv \chi_{D I S} \quad \chi_{D I S}\left(M+\frac{N}{2}\right)=\chi_{S Y M M}(M)
$$

We use the underlying symmetry to improve the DL expansion (both $1 / \mathrm{M}$ and $1 /(1-\mathrm{M})$ fixed) Ciafaloni, Salam
G. Altarelli

$$
\text { DL, LO: } \chi_{D L}(M, \alpha)=\alpha \cdot \chi_{0}(M)+\chi_{s}\left(\frac{\alpha}{M}\right)+\ldots \text {-double count. }
$$

LO
Naive symmetrization:

$$
\chi_{0}(M)=[2 \psi(1)-\psi(M)-\psi(1-M)]
$$

$$
\chi_{s}\left(\frac{\alpha}{M}\right)+\chi_{s}\left(\frac{\alpha}{1-M}\right)+\alpha\left[\chi_{0}(M)-\frac{1}{M}-\frac{1}{1-M}\right]
$$

Not relevant: $\chi_{\text {DIS }}$ not symm.!

In "symmetric" variables:

$$
\chi_{s}\left(\frac{\alpha}{M+\frac{N}{2}}\right)+\chi_{s}\left(\frac{\alpha}{1-M+\frac{N}{2}}\right)+\alpha\left[\psi(1)+\psi(1+N)-\psi\left(M+\frac{N}{2}\right)-\psi\left(1-M+\frac{N}{2}\right)-\frac{1}{M+\frac{N}{2}}-\frac{1}{1-M+\frac{N}{2}}\right]
$$

Note: N determined self-consistently
The actual function for DIS:
$\chi_{s}\left(\frac{\alpha}{M}\right)+\chi_{s}\left(\frac{\alpha}{1-M+N}\right)+\alpha\left[\psi(1)+\psi(1+N)-\psi(M)-\psi(1-M+N)-\frac{1}{M}-\frac{1}{1-M+N}\right]$
to be called $\chi_{\text {DLSymm,Lo }}$
(after mom. cons. subtraction)
G. Altarelli

Similarly for NLO

We use $\chi_{\text {DLSymm,LO }}$ for implementing the Airy procedure:
Theorem: c, k are the same as for "symmetric" variables

$$
\chi_{\text {eff }}(M)=c+\frac{1}{2} k\left(M-\frac{1}{2}\right)^{2}
$$

G. Altarelli

G. Altarelli

Here are the results for splitting functions $\left(\mathrm{n}_{\mathrm{f}}=0\right)$

Our most important competitors:
 Ciafaloni, Colferai, Salam, Stasto hep-ph/0307188. Also Thorne

Same physics: regularisation of $M=0$ pole in χ (and of $M=1$ pole using symmetrisation) and running coupling effects

Different resummation technique, no Airy expansion (num. sol of evol eqn.), and they include χ_{1} but not $\gamma_{2 l}$
G. Altarelli

Same curves on an expanded scale

G. Altarel

Summary and Conclusion

- We have constructed an improved an. dim. that reduces to the pert. result at large x and incorporates BFKL with running coupling effects at small x.
- We think we now know how to get the best use of the joint info from γ and χ.
- Properly introducing running coupling effects in the LO softens the asympt. small-x behaviour as shown by the data.

A clearer picture of the matching of GLAP and BFKL is finally emerging
G. Altarelli

