$Q\bar{Q}$ correlations at HERA: Measurements by H1

O. Behnke (Heidelberg) Oct 11, 2004 HERA-LHC workshop

Analysis and result foils provided by Jeannine Wagner, DESY More information: Conference paper to EPS 2003, Aachen, Abstr. 095

(Double) tagging of heavy flavour at HERA

$$Q = \mathsf{b},\mathsf{c}$$

Q-Tagging methods:

- 1. $D^* \to K \pi \pi_s$ (+other dec. modes)
- 2. Leptons (μ , e)
- 3. inclusive vertex tagging

Double tagging candidates:

00 0	
Method	Comment
$D^* \times D^*$	Low statistics
incl. v.t. \times incl. v.t	under study
$\underline{D^* \times \mu}$	Prel. results!

Ν

 $D^*\mu$ analysis

Detection of **both heavy quarks** of the BGF by their decay and fragmentation products:

- separation of charm and beauty possible due to charge and angle correlations of the D* and the muon
- \bullet almost complete reconstruction of the $Q\bar{Q}$ final state
 - measurement of the gluon density
 - sensitivity to higher orders

Correlations in the γg -CMS (I)

 $egin{array}{lll} \Delta\Phi &pprox \ 180^\circ \ \mathbf{Q}(\mathbf{D}^*) \
eq \ \mathbf{Q}(\mu) \end{array}$

Correlations in the γg -CMS (II)

For beauty production three correlations are possible:

- $\Delta \Phi \,pprox \, {f 180^\circ}$ and ${f Q}({f D}^*) \,
 eq \, {f Q}(\mu)$
- $\Delta\Phi~pprox~\mathbf{180^\circ}$ and $\mathbf{Q}(\mathbf{D}^*)~=~\mathbf{Q}(\mu)$
- $\Delta \Phi \, pprox \, \mathbf{0}^\circ$ and $\mathbf{Q}(\mathbf{D}^*) \,
 eq \, \mathbf{Q}(\mu)$

$D^*\mu$ -events

H1 data: 97-00 $\mathcal{L} = 91.2 \text{ pb}^{-1}$ visible range:

- $p_T(D^*) > 1.5 \; {
 m GeV/c}$; $|\eta_{D^*}| < 1.5$
- $p_T(\mu) > 1.0 \text{ GeV/c}$; $20^\circ \le \theta_\mu \le 160^\circ$
- $\bullet \ 0.05 < y < 0.75$; no cut on Q^2

 \Rightarrow resolved photon contribution suppressed

Reconstruction of D^{*+} : $D^{*+} \to D^0 \pi_s^+ \to K^- \pi^+ \pi_s^+$

simultaneous fit of right $(K^-\pi^+\pi_s^+)$ and wrong $(K^+\pi^+\pi_s^-)$ charge combinations

Correlation in the lab frame

DIS \implies transform into γp system ($\Delta \Phi \rightarrow \Delta \Phi^*$)

Smearing by:

* perturbative effects (gluon radiation)
* non perturbative effects (fragmentation)

 \implies angle between the D^* and the muon $\Delta \Phi^*$ can differ substantially from 180° or 0° respectively

 \longrightarrow distinction only between $\Delta\Phi^*\geq90^\circ$ and $\Delta\Phi^*\leq90^\circ$

$Q(\mu) = Q(D^*)$	1 no charm few beauty	2 no charm beauty
$Q(\mu) e Q(D^*)$	3 few charm beauty	4 charm beauty

$\Delta \Phi^* < 90^\circ \Delta \Phi^* > 90^\circ$

2 dim. Log-Likelihood-Fit

using a 2dim.Log-Likelihood-Fit to separate c and b

- **\star** Quantities: correlation region, ΔM
- simultaneous fit of right and wrong charge combinations

H1 Preliminary

Q(D^{*})=Q(μ), ΔΦ^{*}>90[°]

Q(D^{*})≠ **Q(μ),** ΔΦ^{*}<90[°]

Q(D^{*})≠ **Q(μ)**, ΔΦ^{*}>90[°]

2 dim. Log-Likelihood-Fit

(correlation regions)

Subtract background due to wrongly identified muons (c: $\approx 30\%$, b: $\approx 5\%$): $N_c = 88 \pm 14 \implies$ c contribution: 59%

 $N_b = 62 \pm 19 \Longrightarrow$ b contribution: 41%

Total c and b cross sections

Visible range:

$$\begin{split} p_T(D^*) &> 1.5 \; \mathrm{GeV/c} \; ; \; |\eta(D^*)| < 1.5 \\ p_T(\mu) &> 1.0 \; \mathrm{GeV/c} \; ; \; 20^\circ < \theta_\mu < 160^\circ \\ 0.05 < y < 0.75 \end{split}$$

 $egin{array}{rll} \sigma^c_{vis}(ep o e'D^*\mu X) &=& (720 \pm 115 \pm 245) \; {
m pb} \ \sigma^b_{vis}(ep o e'D^*\mu X) &=& (380 \pm 120 \pm 130) \; {
m pb} \end{array}$

Comparison with LO direct prediction (AROMA):

	$\sigma_{LO}^{dir.}(ep \to e'D^*\mu X) \; [pb]$
charm	≈ 400
beauty	≈ 100

Double tagging with $D^*\mu$ correlations

- $\diamondsuit D^* \mu$ quantities are taken as an approximation of $Q\bar{Q}$ quantities
- ♦ Characteristic quantities:

 $p_T(D^*\mu)$: transverse momentum of $D^*\mu$ pair $M(D^*\mu)$: invariant mass of $D^*\mu$ pair $\hat{y}(D^*\mu)$: rapidity of $D^*\mu$ pair $\Delta\Phi$: azimuthal angle difference of the D^* and the μ

Leading order (LO):

 $p_T(Q\bar{Q}) \approx 0$ $\Delta \Phi \approx 180^{\circ}$

- ◊ parton shower (PS)
- ♦ fragmentation

 \diamond non-zero k_T of initial partons

 $p_T(Q\bar{Q}),\Delta\Phi$ and $\hat{y}(Q\bar{Q})$ used to study non pert. effects.

 $M(Q\bar{Q})$ and $\hat{y}(Q\bar{Q})$: needed to determine the gluon density

Normalized differential cross sections

 \Rightarrow LO + PS prediction describes the shape of the data.

Conclusions

♦ First double tagging measurement at HERA:

$$Q \longrightarrow D^* \to D^0 \pi_s \to K \pi \pi_s$$

 $\bar{Q} \longrightarrow \mu$

- separation of charm and beauty with the aid of charge and angle correlations
- charm and beauty cross sections are compatible
 with previous results
- \diamond LO+PS model describes the shape of the $D^*\mu$ variables